Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The transition to smart, wearable, and flexible optoelectronic devices that communicate with each other and perform neuromorphic computing at the edge, is a major goal in next-generation optoelectronics. These devices are expected to carry out their regular tasks while being supported by energy-efficient, in-memory computations. In this study, a lateral flexible device based on cesium lead tribromide perovskite single crystals integrated with single-walled carbon nanotube thin-film electrodes is presented. It is demonstrated that the device follows the Bienenstock-Cooper-Munro theory of synaptic modification under hybrid optoelectronic stimuli. This biorealistic response paves the way for the development of hybrid organic-inorganic artificial visual systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202500203DOI Listing

Publication Analysis

Top Keywords

perovskite single
8
short-term bienenstock-cooper-munro
4
bienenstock-cooper-munro learning
4
learning optoelectrically-driven
4
optoelectrically-driven flexible
4
flexible halide
4
halide perovskite
4
single crystal
4
crystal memristors
4
memristors transition
4

Similar Publications

The generation of reactive oxygen species (ROS) through nanozyme-mediated sonocatalytic therapy has demonstrated remarkable therapeutic efficacy in the field of cancer. Nevertheless, it remains a significant challenge for nanozymes with a single catalytic active center to generate sufficient ROS via Fenton or Fenton-like reactions to effectively induce tumor cell death. In order to enhance the catalytic efficacy, we devised and synthesized a multiple active centre and mitochondrial-targeted perovskite nanozyme (NCFP), doped with cobalt (Co) element, and incorporated 4-carboxybutyltriphenylphosphonium bromide (TPP) as a mitochondrial targeting marker for ultrasound (US)-assisted enzyme-like catalytic treatment of tumors.

View Article and Find Full Text PDF

UVA/B-Selective Skin-Inspired Nociceptors Based on Green Double Perovskite QDs-Sensitized 2D Semiconductor toward Reliable Human Somatosensory System Simulation.

J Phys Chem Lett

September 2025

Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

Achieving UVA/B-selective, skin-inspired nociceptors with perception and blockade functions at the single-unit device level remains challenging. This is because the device necessitates distinct components for every performance metric, thereby leading to complex preparation processes and restricted performance, as well as the absence of deep UV (UVB and below)-selective semiconductors. Here, to address this, we develop a structure-simplification skin-inspired nociceptor using a reverse type-II CuAgSbI/MoS heterostructure.

View Article and Find Full Text PDF

Perovskite-silicon tandem solar cells have attracted considerable attention owing to their high power conversion efficiency (PCE), which exceeds the limits of single-junction devices. This study focused on lead-free tin-based perovskites with iodine-bromine mixed anions. Bromide perovskites have a wide bandgap; therefore, they are promising light absorbers for perovskite-silicon tandem solar cells.

View Article and Find Full Text PDF

Perovskite materials have revolutionized optoelectronics by virtue of their tunable bandgaps, exceptional optoelectronic properties, and structural flexibility. Notably, the state-of-the-art performance of perovskite solar cells has reached 27%, making perovskite materials a promising candidate for next-generation photovoltaic technology. Although numerous reviews regarding perovskite materials have been published, the existing reviews generally focus on individual material systems (e.

View Article and Find Full Text PDF

Colloidal semiconductor quantum dots (QDs) can generate multiple excitons (MXs) within a single QD. Owing to their large absorption cross-section, efficient utilization of MX is anticipated for the development of light-harvesting systems. However, MXs typically undergo nonradiative decay via Auger recombination (AR).

View Article and Find Full Text PDF