Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Optical inversion engineering is crucial for the precise manufacturing of optical coatings. We present a fast-analytical model to generate a set of simulated datasets for training the deep learning model. Subsequently, a deep learning strategy based on the transformer framework for inversing errors in the manufacturing of optical coatings is proposed. After several rounds of training, the model achieves a spectral difference of less than 1% between the inverse spectrum and the measured spectrum from an actual deposition process, with each computation completed in just tens of milliseconds. This level of spectral accuracy, combined with the rapid computation speed, highlights the model's exceptional capability to precisely and efficiently inverse thickness and refractive index errors for actual production.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.551923DOI Listing

Publication Analysis

Top Keywords

optical coatings
12
optical inversion
8
inversion engineering
8
manufacturing optical
8
deep learning
8
optical
5
advanced deep
4
deep learning-based
4
learning-based strategy
4
strategy optical
4

Similar Publications

Titanium dioxide (TiO) thin films were deposited on glass substrates under HV conditions at room temperature by the physical vapor deposition method. Produced titanium thin films were post-annealed at 573 K at different oxygen flows (0, 9 and 23 cm/s). The influence of different oxygen flows on nano-structure, crystallography, and optical parameters of TiO films was investigated by XRD, AFM, and spectrophotometer in the UV-VIS wavelength range.

View Article and Find Full Text PDF

Three-dimensional optical path extended gourd-type photoacoustic cell for highly sensitive trace acetylene sensing.

Photoacoustics

October 2025

Hubei Key Laboratory of Intelligent Wireless Communications, Hubei Engineering Research Center of Intelligent IOT technology, College of Electronics and Information Engineering, South-Central Minzu University, Wuhan 430074, China.

A novel gourd-type photoacoustic cell (GTPAC) has been developed, featuring a highly reflective, polished gold film-coated inner wall that minimizes optical loss and maximizes light utilization efficiency. GTPAC integrates two coupled spherical chambers with a radius ratio 2:3, which is close to the golden ratio. Its unique Gaussian curvature distribution enables multi-directional, disordered light beam reflection without complex optical alignment.

View Article and Find Full Text PDF

-Heterocyclic carbene (NHC)-protected gold nanoclusters (AuNCs) have emerged as promising candidates for biomedical applications due to their high stability and strong photoluminescence. However, their integration into atomistic molecular dynamics (MD) simulations, which facilitates an understanding of their behavior in biological environments, has been hindered by the lack of reliable force field parameters. Here, we present a new set of parameters for classical MD simulations of NHC-protected AuNCs, fully compatible with the AMBER force field.

View Article and Find Full Text PDF

Buildings are increasingly being conceived as dynamic systems that interact with their surroundings to optimize energy performance and enhance occupant comfort. This evolution in architectural thinking draws inspiration from biological systems, where the building envelope functions like a thermally responsive "skin" that can autonomously adjust its optical and thermal properties in response to environmental temperature changes. Among the many approaches developed for smart building envelopes, passive thermoresponsive spectral modulation systems have attracted growing interest due to their structural simplicity and low energy demand.

View Article and Find Full Text PDF

Thin films of CuSn Gd S were prepared on soda-lime glass substrates using spin coating in a sulfur-rich environment. We investigated how doping CuSnS with gadolinium (Gd) affected its structural, morphological, and optical properties using X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), and UV-Vis spectroscopy. XRD showed that all samples had a polycrystalline monoclinic structure, while FE-SEM revealed a mix of spherical and polygon-shaped grains.

View Article and Find Full Text PDF