Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Currently, it remains a challenge for micro-transmission filters based on diffractive nanostructures to achieve a balance among the spectral range, transmission efficiency, and color purity. While plasmonic metal metasurfaces of Fabry-Pérot (FP) cavities offer a wide spectral range, they are hindered by large full width at half maximum (FWHM) and low transmission efficiency; on the other hand, all-dielectric FP cavities exhibit small FWHM and high transmission efficiency but narrow spectral range. This study presents an innovative second-order FP cavity structure, wherein the introduction of a metal layer modifies the electromagnetic field distribution inside the cavity, leading to a shift in resonance modes. By suppressing odd-order resonant peaks and retaining even-order resonant peaks, this approach breaks the inherent link between FWHM and free spectral range (FSR), significantly expanding the spectral range while simultaneously reducing FWHM. Leveraging the optical absorption of silicon and the selective suppression effect of a platinum layer, a filter with FWHM ranging from 6 nm to 13 nm and an average transmission efficiency exceeding 70% is fabricated over a wide spectral range from 550 nm to 850 nm. This achieves a narrow linewidth and high color purity across a broad transmission spectrum. A detailed comparison between measurement data of samples and simulation results strongly validates the effectiveness and reliability of the proposed filter design.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.565067DOI Listing

Publication Analysis

Top Keywords

spectral range
24
transmission efficiency
16
color purity
8
wide spectral
8
resonant peaks
8
range
7
spectral
6
transmission
5
fwhm
5
narrow-band filter
4

Similar Publications

Genetic variants of various cytochrome P450 (CYP) enzymes significantly impact pharmacokinetics. The highly polymorphic hepatic CYP2C9 metabolizes ~ 15% of clinically used drugs. This study aimed to characterize the ligand-binding properties of the understudied CYP2C9.

View Article and Find Full Text PDF

Herein, a novel class of azo photoswitches based on a phthalimide with an azo bond to the imide ring is presented, exhibiting reversible isomerization under a broad range of visible light irradiation from 405 to 530 nm. Structural variations with heteroaryl or aryl segments attached to the 3-phthalylazo unit exhibit distinct spectral features, such as red-shifted absorption, well-separated absorption bands, and tunable stability of the metastable isomer, ranging from seconds to days. They differ drastically in the half-life of -isomer stability, ranging from several seconds (-methylpyrrole) to days (-methylimidazole).

View Article and Find Full Text PDF

Premise: Floral pigments primarily serve to attract pollinators through color display and also contribute to protection against environmental stress. Although pigment composition can be plastically altered under stress, its impact on pollinator color perception remains poorly understood. Moricandia arvensis (Brassicaceae) exhibits seasonal floral dimorphism, with lilac spring flowers and white summer flowers.

View Article and Find Full Text PDF

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful analytical technique with a wide range of applications. To support the analysis of diverse and complex samples, various NMR tools and accessories have been created. Three-dimensional (3D) printing is an underutilized production method for NMR hardware, mainly due to the lack of H NMR background-free resins.

View Article and Find Full Text PDF

AlN is a core material widely used as a substrate and heat sink in various electronic and optoelectronic devices. Introducing luminescent properties into intrinsic AIN opens new opportunities for next-generation intelligent sensors, self-powered displays, and wearable electronics. In this study, the first evidence is presented of AlN crystals exhibiting satisfactory mechanoluminescence (ML), photoluminescence (PL), and afterglow performance, demonstrating their potential as novel multifunctional optical sensors.

View Article and Find Full Text PDF