98%
921
2 minutes
20
Multi-Modal Medical Image Fusion (MMMIF) has become increasingly important in clinical applications, as it enables the integration of complementary information from different imaging modalities to support more accurate diagnosis and treatment planning. The primary objective of Medical Image Fusion (MIF) is to generate a fused image that retains the most informative features from the Source Images (SI), thereby enhancing the reliability of clinical decision-making systems. However, due to inherent limitations in individual imaging modalities-such as poor spatial resolution in functional images or low contrast in anatomical scans-fused images can suffer from information degradation or distortion. To address these limitations, this study proposes a novel fusion framework that integrates the Non-Subsampled Shearlet Transform (NSST) with a Convolutional Neural Network (CNN) for effective sub-band enhancement and image reconstruction. Initially, each source image is decomposed into Low-Frequency Coefficients (LFC) and multiple High-Frequency Coefficients (HFC) using NSST. The proposed Concurrent Denoising and Enhancement Network (CDEN) is then applied to these sub-bands to suppress noise and enhance critical structural details. The enhanced LFCs are fused using an AlexNet-based activity-level fusion model, while the enhanced HFCs are combined using a Pulse Coupled Neural Network (PCNN) guided by a Novel Sum-Modified Laplacian (NSML) metric. Finally, the fused image is reconstructed via Inverse-NSST (I-NSST). Experimental results prove that the proposed method outperforms existing fusion algorithms, achieving approximately 16.5% higher performance in terms of the QAB/F (edge preservation) metric, along with strong results across both subjective visual assessments and objective quality indices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343962 | PMC |
http://dx.doi.org/10.1038/s41598-025-13862-y | DOI Listing |
Haematologica
September 2025
Division of Hematopathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/NewYork-Presbyterian Hospital, New York, NY; Multiparametric In Situ Imaging (MISI) Laboratory, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York.
Not available.
View Article and Find Full Text PDFClin Pediatr (Phila)
September 2025
Department of Medicine (Infectious Disease), University of Connecticut Health Center, Boston University Medical Center, Falmouth Hospital, Falmouth, MA, USA.
A total of 101 patients with a clinical picture of persisting Lyme disease seen at the University of Connecticut Health Center and Boston Medical Center were recruited for the study to determine whether persistent infection is the likely cause. Brain SPECT imaging and responses to antibiotic treatments were recorded. Patients had more than 5 symptoms lasting more than 6 months.
View Article and Find Full Text PDFStroke
September 2025
Department of Neurology, Yale School of Medicine, New Haven, CT (L.H.S.).
Preclinical stroke research faces a critical translational gap, with animal studies failing to reliably predict clinical efficacy. To address this, the field is moving toward rigorous, multicenter preclinical randomized controlled trials (mpRCTs) that mimic phase 3 clinical trials in several key components. This collective statement, derived from experts involved in mpRCTs, outlines considerations for designing and executing such trials.
View Article and Find Full Text PDFCirc Arrhythm Electrophysiol
September 2025
Department of Congenital Heart Disease, Evelina London Children's Hospital, United Kingdom (S. Chivers, T.V., V.Z., S.M., G.M., W.R., E.R., D.F.A.L., T.G.D., O.I.M., G.K.S., J.M.S.).
Background: Fetal tachycardias can cause adverse fetal outcomes including ventricular dysfunction, hydrops, and fetal demise. Postnatally, ECG is the gold standard, but, in fetal practice, echocardiography is used most frequently to diagnose and monitor fetal arrhythmias. Noninvasive extraction of the fetal ECG (fECG) may provide additional information about the electrophysiological mechanism and monitoring of intermittent arrhythmias.
View Article and Find Full Text PDFBr J Psychiatry
September 2025
Neuroscience Research Australia, Randwick, New South Wales, Australia.
Background: Individuals with a family history of bipolar disorder are at increased risk of developing affective psychopathology. Longitudinal imaging studies in young people with familial risk have been limited, and cortical developmental trajectories in the progression towards illness remain obscure.
Aims: To establish high-resolution longitudinal differences in cortical structure that are associated with risk of bipolar disorder.