A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The Cost of Survival: Mutation in a Barley Strigolactone Repressor HvD53A Impairs Photosynthesis but Increases Drought Tolerance. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Strigolactones (SLs) are a class of plant hormones that play a crucial role in shaping plant architecture, significantly influencing plant adaptation to harsh environmental conditions. In this study, we examined the effects of a mutation in a component of the barley SL signaling pathway, the SL repressor HvDWARF53A, on plant growth and drought tolerance. We compared the results with those of a previously described barley mutant, which is highly tillered and drought-sensitive, carrying a mutation in the SL receptor gene HvDWARF14. The two mutants, hvd14.d and hvd53a.f, displayed contrasting phenotypes, including differences in plant height, tillering, and drought sensitivity. Under control conditions, ultrastructural analysis of hvd53a.f revealed smaller chloroplasts and fewer grana stacks, which may account for its reduced photosynthetic efficiency. Conversely, transcriptomic analysis linked the differentially expressed genes in hvd53a.f to antioxidation and stress responses, suggesting a potentially enhanced capacity to cope with drought. Further analysis revealed a strong connection between the SL signaling pathway and circadian clock components. Among these, CIRCADIAN CLOCK ASSOCIATED 1 emerged as a potential SL-responsive transcription factor (TF), possibly playing a key role in regulating tillering. Under drought conditions, hvd53a.f exhibited enhanced tolerance, as evidenced by higher relative water content, reduced chlorophyll degradation, and stable, albeit reduced, photosynthetic performance. Here, we identified the SL-related TF JUNGBRUNNEN 1 as a potential regulator of genes involved in water deficit response and antioxidation processes. Overall, the hvd53a.f mutation enhances drought tolerance while maintaining low, stable photosynthesis, highlighting HvD53A as a central node connecting SL signaling to stress resilience.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcaf095DOI Listing

Publication Analysis

Top Keywords

drought tolerance
12
signaling pathway
8
tillering drought
8
reduced photosynthetic
8
circadian clock
8
drought
6
plant
5
hvd53af
5
cost survival
4
mutation
4

Similar Publications