A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Synthetic communities as a model for determining interactions between a biofertilizer chassis organism and native microbial consortia. | LitMetric

Synthetic communities as a model for determining interactions between a biofertilizer chassis organism and native microbial consortia.

ISME J

Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, United States.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biofertilizers are critical for sustainable agriculture since they can replace ecologically disruptive chemical fertilizers while improving the trajectory of soil and plant health. Yet, for improving deployment, the persistence of biofertilizers within native soil consortia must be elucidated and enhanced. We describe a high-throughput, modular, and automation-friendly in vitro approach to screen for biofertilizer persistence within soil-derived consortia after co-cultivation with stable synthetic soil microbial communities (SynComs) obtained through a top-down cultivation process. We profiled ~1200 SynComs isolated from various soil sources and cultivated in divergent media types, and detected significant phylogenetic diversity (e.g., Shannon index >4) and richness (observed richness >400) across these communities. We observed high reproducibility in SynCom community structure from common soil and media types, which provided a testbed for assessing biofertilizer persistence within representative native consortia. Furthermore, we demonstrated the screening method described herein can be coupled with microbial engineering to efficiently identify soil-derived SynComs where an engineered biofertilizer organism (i.e. Bacillus subtilis) persists. Accordingly, we discovered that B. subtilis persisted in approximately 10% of SynComs that generally followed the diversity-invasion principle. Additionally, our approach enables analysis of the ecological impact of B. subtilis inoculation on SynCom structure and profile alterations in community diversity and richness associated with the presence of a genetically modified model bacterium. Ultimately, this work establishes a modular pipeline that could be integrated into a variety of microbiology/microbiome-relevant workflows or related applications that would benefit from assessing persistence and interaction of a specific organism of interest with native consortia.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ismejo/wraf170DOI Listing

Publication Analysis

Top Keywords

biofertilizer persistence
8
media types
8
native consortia
8
consortia
5
soil
5
synthetic communities
4
communities model
4
model determining
4
determining interactions
4
biofertilizer
4

Similar Publications