Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Eg5 is a mitotic kinesin motor protein essential for the formation of bipolar spindles during cell division. Its inhibition disrupts mitosis, leading to cell cycle arrest and apoptosis in cancer cells. This makes Eg5 a promising target for chemotherapeutic interventions, especially in cases resistant to traditional treatments. In this study, a drug repurposing strategy was employed to design and synthesise quinoline-based Schiff base derivatives as potential Eg5 inhibitors. These compounds were subjected to in vitro biological evaluations, including cytotoxicity testing against the human breast cancer cell line MDA-MB-231 and the normal mouse fibroblast cell line L929 using the MTT assay. Enzymatic assays targeting Eg5 were also conducted. Among the synthesised molecules, compound (5) demonstrated significant Eg5 inhibition in enzymatic assays, with an IC of 2.544 ± 0.810 µM in the Malachite Green assay and 4.03 ± 2.027 µM in the steady-state ATPase assay, and moderate inhibition against triple-negative breast cancer cells (MDA-MB-231). Computational studies, including molecular docking, molecular dynamics simulations, and MM/GBSA free energy calculations, were performed to analyse binding interactions. ADMET properties were predicted using the QikProp module. The findings suggest that targeting mitosis through Eg5 inhibition may offer a strategic approach in chemotherapy, potentially enhancing treatment efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10822-025-00645-wDOI Listing

Publication Analysis

Top Keywords

free energy
8
cancer cells
8
breast cancer
8
enzymatic assays
8
eg5 inhibition
8
eg5
6
computational experimental
4
experimental repositioning
4
repositioning quinoline
4
quinoline analogues
4

Similar Publications

This study investigated the effect of refining time on the physicochemical and functional properties of anhydrous cream prepared from a palm-sunflower oil blend using a stirred ball mill. Refining was performed for 0-300 min, and its impact on particle size distribution, rheology, oxidative stability, and thermal behavior was assessed. The target particle fineness (D90 ≤ 30 μm) was achieved at approximately 180 min, with negligible reduction thereafter.

View Article and Find Full Text PDF

The study of electrochemical oxidations has wide-ranging implications, from the development of new electrocatalysts for fuel cells for energy conversion, to the synthesis of fine chemicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) has been used for decades as a sustainable, metal-free mediator for chemical oxidations and is now being used for electrochemical oxidations. We describe here a novel approach to TEMPO-mediated electrooxidations, in which the chemical input and waste generated during electrooxidations of alcohols are minimized by using a multifunctional room temperature ionic liquid (RTIL) to facilitate flow electrosynthesis.

View Article and Find Full Text PDF

This work elucidates the thermo-kinetics of the thermal conversion of cameroonian kaolin to metakaolin as the main product. The thermokinetical parameters (activation energy and pre-exponential factor ) for the kaolin conversion were calculated using model-free methods, the Kissinger-Akahira-Sunrose (KAS) and the Flynn-Wall-Ozawa (FWO) method, and differential methods (Kissinger and Ozawa) additionally including iterative procedures for KAS and FWO methods (KAS-Ir; FWO-Ir). The cameroonian kaolin was heat-treated using three different heating rates, 5, 20 and 40 K min, leading to metakaolin samples named MK-(5), MK-(20) and MK-(40).

View Article and Find Full Text PDF

Phytophthora root rot caused by the hemibiotrophic oomycete, is a major biotic hindrance in meeting the ever-increasing demand for avocados. In addition, the pathogen is a global menace to agriculture, horticulture and forestry. Phosphite trunk injections and foliar sprays remain the most effective chemical management strategy used in commercial avocado orchards against the pathogen.

View Article and Find Full Text PDF

The reversible covalent bond formation that underpins dynamic covalent chemistry (DCC) enables the construction of stimuli-responsive systems and the efficient assembly of complex architectures. While most DCC studies have focused on systems at thermodynamic equilibrium, there is growing interest in systems that operate away from equilibrium-either by shifting to a new free-energy landscape in response to a stimulus, or by accessing an out-of-equilibrium state following an energy input. Imine-based systems are especially attractive due to the accessibility of their building blocks and their dynamic behavior in both condensation and transimination reactions.

View Article and Find Full Text PDF