Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We investigate the confinement of neutral excitons in a one-dimensional (1D) potential engineered by proximizing hexagonal boron nitride (hBN)-encapsulated monolayer MoSe to ferroelectric domain walls (DWs) in periodically poled LiNbO. Our device exploits the nanometer scale in-plane electric field gradient at the DW to induce dipolar exciton confinement via the DC Stark effect. Spatially resolved photoluminescence spectroscopy reveals the emergence of narrow emission lines redshifted from the MoSe neutral exciton by up to ∼100 meV, depending on the sample structure. The spatial distribution, excitation energy response, and polarization properties of the emission are consistent with the signatures of 1D-confined excitons. The large electric-field gradients accessible via proximal ferroelectric systems open up new avenues for the creation of robust quantum-confined excitons in atomically thin materials and their heterostructures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395486 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.5c02438 | DOI Listing |