98%
921
2 minutes
20
Unlabelled: Understanding how neural circuits integrate sensory and state information to support context-dependent behavior is a central challenge in neuroscience. Oviposition is a complex process during which a fruit fly integrates context and sensory information to choose an optimal location to lay her eggs. The circuit that controls oviposition is known, but how the oviposition circuit integrates multiple sensory modalities and internal states is not. Using the Hemibrain connectome, we identified the Oviposition Inhibitory Neuron (oviIN) as a key hub in the oviposition circuit and analyzed its inputs to uncover potential parallel pathways that may be responsible for computations related to sensory integration and decision-making. We applied a network analysis to the subconnectome of inputs to the oviIN to identify clusters of interconnected neurons - many of which are uncharacterized cell types. Our findings indicate that the inputs to oviIN form multiple parallel pathways through the unstructured neuropils of the Superior Protocerebrum, a region implicated in context-dependent processing.
Significance Statement: The recent advent of the connectome enables researchers to probe the connectivity of uncharacterized cell types in the parts of the fruit fly brain that are responsible for cognitive-level computations. Our study analyzed the connectivity of the oviposition circuit which controls a complex behavior that depends on sensory and context integration and decision-making computations. Using graph theoretic and computational methods, we found that the sole inhibitory neuron in the circuit is a hub that integrates information from multiple clusters of uncharacterized neurons with potentially novel functions. Our work presents a new and timely perspective by demonstrating how new targets for study can be identified from the vast trove of uncharacterized neurons and cell types in the connectome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12338558 | PMC |
http://dx.doi.org/10.1101/2024.10.25.620362 | DOI Listing |
Chaos
September 2025
Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil.
Neuronal heterogeneity, characterized by a multitude of spiking neuronal patterns, is a widespread phenomenon throughout the nervous system. In particular, the brain exhibits strong variability among inhibitory neurons. Despite the huge neuronal heterogeneity across brain regions, which in principle could decrease synchronization due to differences in intrinsic neuronal properties, cortical areas coherently oscillate during various cognitive tasks.
View Article and Find Full Text PDFComput Biol Med
September 2025
Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; School of Medical Sciences and Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine
Functional magnetic resonance imaging (fMRI) is a pivotal tool for mapping neuronal activity in the brain. Traditionally, the observed hemodynamic changes are assumed to reflect the activity of the most common neuronal type: excitatory neurons. In contrast, recent experiments, using optogenetic techniques, suggest that the fMRI-signal could reflect the activity of inhibitory interneurons.
View Article and Find Full Text PDFEur J Neurosci
September 2025
The Tampa Human Neurophysiology Lab, Department of Neurosurgery, Brain and Spine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.
Sensory areas exhibit modular selectivity to stimuli, but they can also respond to features outside of their basic modality. Several studies have shown cross-modal plastic modifications between visual and auditory cortices; however, the exact mechanisms of these modifications are yet not completely known. To this aim, we investigated the effect of 12 min of visual versus sound adaptation (referring to forceful application of an optimal/nonoptimal stimulus to a neuron[s] under observation) on the infragranular and supragranular primary visual neurons (V1) of the cat (Felis catus).
View Article and Find Full Text PDFJ Neurosci
September 2025
Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine; Budapest, Hungary
The paraventricular thalamic nucleus (PVT) integrates subcortical signals related to arousal, stress, addiction, and anxiety with top-down cortical influences. Increases or decreases in PVT activity exert profound, long-lasting effects on behavior related to motivation, addiction and homeostasis. Yet the sources of its subcortical excitatory and inhibitory afferents, their distribution within the PVT, and their integration with layer-specific cortical inputs remain unclear.
View Article and Find Full Text PDFCell Rep
September 2025
Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Un
Neurodevelopmental disorders often impair multiple cognitive domains. For instance, a genetic epilepsy syndrome might cause seizures due to cortical hyperexcitability and present with memory impairments arising from hippocampal dysfunction. This study examines how a single disorder differentially affects distinct brain regions using induced pluripotent stem cell (iPSC)-derived cortical- and hippocampal-ganglionic eminence assembloids to model developmental and epileptic encephalopathy 13, a condition arising from gain-of-function mutations in the SCN8A gene encoding the sodium channel Nav1.
View Article and Find Full Text PDF