98%
921
2 minutes
20
Microplastics (MPs) are emerging environmental contaminants due to increasing global plastic production and waste. Microplastics, defined as plastic particles less than 5 mm in diameter, are formed through degradation of larger plastics via sunlight, weathering, and microbes. These plastic compounds are widely detected in water, soil, food, as well as human stool and blood. The gut microbiome, often referred to as our second genome, is important in human health and is the primary point of contact for orally ingested microplastics. To investigate the impact of ingested MPs on the gut microbiome and the metabolome, 8 weeks-old male and female C57/BL6 mice were orally gavaged mixed plastic (5 um) exposure consisting of polystyrene, polyethylene, and the biodegradable/biocompatible plastic, poly-(lactic-co-glycolic acid) twice a week for 4 weeks at 0, 2, or 4 mg/week (n = 8/group). Fecal pellets were collected for bacterial DNA extraction and metagenomic shotgun sequencing, and serum was subjected to targeted and untargeted metabolomics. MPs exposure resulted in significant sex-specific and dose-dependent changes to the gut microbiome composition along with substantial regulation of the predicted metabolic pathways. Untargeted metabolomics in serum showed that a low MPs dose displayed a more prominent effect on key metabolic pathways such as amino acid metabolism, mitochondrial function, and inflammation. Additionally, SCFA-targeted metabolomics showed significant changes in neuroprotective SCFAs levels in both sexes by MPs exposure. In conclusion, our study has demonstrated that microplastics dysregulate the gut microbiome and serum metabolome, providing critical insights into potential human disease risks associated with microplastic contamination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12338714 | PMC |
http://dx.doi.org/10.1101/2025.07.15.664901 | DOI Listing |
Sci Signal
September 2025
Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35233, USA.
Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.
View Article and Find Full Text PDFGut Microbes
December 2025
Clinical Microbiome Unit, Laboratory of Host Immunity and Microbiome, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institute of Health, Bethesda, MD, USA.
Parity, the number of pregnancies carried beyond 20 weeks, influences the maternal gut microbiome. However, whether parity modulates the infant microbiome longitudinally remains underexplored. To address this, 746 infants in a longitudinal cohort study were assessed.
View Article and Find Full Text PDFFood Funct
September 2025
Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
It is unknown how human health is affected by the current increased consumption of ultra-processed plant-based meat analogues (PBMA). In the present study, rats were fed an experimental diet based on pork or a commercial PBMA, matched for protein, fat, and carbohydrate content for three weeks. Rats on the PBMA diet exhibited metabolic changes indicative of lower protein digestibility and/or dietary amino acid imbalance, alongside increased mesenteric (+38%) and retroperitoneal (+20%) fat depositions despite lower food and energy intake.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
September 2025
International Joint Center, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey.
Despite undisputed success of orthopaedic procedures, surgical site infections (SSI) such as periprosthetic joint infection (PJI) continues to compromise the outcome and result in major clinical and economic burden. The overall rate of infection is expected to rise in the future resulting in significant associated mortality and morbidity. Traditional concepts have largely attributed the source of PJI to exogenous pathogens.
View Article and Find Full Text PDFThe present investigation elucidates the therapeutic potential of glycyrrhizin, the predominant triterpene saponin isolated from (licorice), in the management of systemic lupus erythematosus (SLE), an autoimmune disorder characterized by multisystemic involvement and therapeutic recalcitrance. Comprehensive interrogation of multiple disease-specific databases facilitated the identification of crucial SLE-associated molecular targets and hub genes, with MAPK1, MAPK3, TP53, JUN, and JAK2 demonstrating the highest degree of network centrality. Subsequent molecular docking simulations and binding affinity assessments revealed compounds with exceptional complementarity to these pivotal molecular targets, establishing as a pharmacologically promising botanical source and glycyrrhizin as its principal bioactive constituent meriting comprehensive mechanistic investigation.
View Article and Find Full Text PDF