Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurately capturing individual differences in semantic networks is fundamental to advancing our mechanistic understanding of semantic memory. Past empirical attempts to construct individual-level semantic networks from behavioral paradigms may be limited by data constraints. To assess these limitations and propose improved designs for the measurement of individual semantic networks, we conducted a recovery simulation investigating the psychometric properties underlying estimates of individual semantic networks obtained from two different behavioral paradigms: free associations and relatedness judgment tasks. Our results show that successful inference of semantic networks is achievable, but they also highlight critical challenges. Estimates of absolute network characteristics are severely biased, such that comparisons between behavioral paradigms and different design configurations are often not meaningful. However, comparisons within a given paradigm and design configuration can be accurate and generalizable when based on designs with moderate numbers of cues, moderate numbers of responses, and cue sets including diverse words. Ultimately, our results provide insights that help evaluate past findings on the structure of semantic networks and design new studies capable of more reliably revealing individual differences in semantic networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12338769PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0328712PLOS

Publication Analysis

Top Keywords

semantic networks
32
individual semantic
12
behavioral paradigms
12
semantic
9
networks
8
individual differences
8
differences semantic
8
networks behavioral
8
moderate numbers
8
measuring individual
4

Similar Publications

Spatial transcriptomics (ST) reveals gene expression distributions within tissues. Yet, predicting spatial gene expression from histological images still faces the challenges of limited ST data that lack prior knowledge, and insufficient capturing of inter-slice heterogeneity and intra-slice complexity. To tackle these challenges, we introduce FmH2ST, a foundation model-based method for spatial gene expression prediction.

View Article and Find Full Text PDF

Drug-target interaction (DTI) identification is of great significance in drug development in various areas, such as drug repositioning and potential drug side effects. Although a great variety of computational methods have been proposed for DTI prediction, it is still a challenge in the face of sparsely correlated drugs or targets. To address the impact of data sparsity on the model, we propose a multi-view neighborhood-enhanced graph contrastive learning approach (MneGCL), which is based on graph clustering according to the adjacency relationship in various similarity networks between drugs or targets, to fully exploit the information of drugs and targets with few corrections.

View Article and Find Full Text PDF

Identifying side effects is crucial for drug development and postmarket surveillance. Several computational methods based on graph neural networks (GNNs) have been developed, leveraging the topological structure and node attributes in graphs with promising results. However, existing heterogeneous-network-based approaches often fail to fully capture the complex structure and rich semantic information within these networks.

View Article and Find Full Text PDF

Background: Currently, midwifery education is confronted with a variety of obstacles, such as inadequate resources and conventional learning methods that are less effective in enhancing the clinical skills of students. Technological advancements and the rapid evolution of maternal and neonatal health services necessitate the transformation of midwifery education to a competency-based curriculum and outcome-based assessment paradigm. Artificial intelligence (AI) and deep learning have the potential to provide adaptive, personalized, and precise learning in this context.

View Article and Find Full Text PDF

Cascade Aggregation Network for Accurate Polyp Segmentation.

IET Syst Biol

September 2025

School of Computer and Information Techonology, Xinyang Normal University, Xinyang, China.

Accurate polyp segmentation is crucial for computer-aided diagnosis and early detection of colorectal cancer. Whereas feature pyramid network (FPN) and its variants are widely used in polyp segmentation, inherent limitations existing in FPN include: (1) repeated upsampling degrades fine details, reducing small polyp segmentation accuracy and (2) naive feature fusion (e.g.

View Article and Find Full Text PDF