A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Forest edges are globally warmer than interiors and exceed optimal temperatures for vegetation productivity. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Forests not only regulate the global climate by absorbing carbon dioxide but also shape local biophysical conditions by creating microclimates that buffer temperature extremes. However, ongoing deforestation and fragmentation are transforming forest interiors into edge environments, which may differ markedly in their microclimatic conditions and undermine local climate-regulating functions. Here, we quantify how proximity to forest edges alters thermal conditions across biomes and seasons using global satellite-derived surface temperature data from nearly 13 million sites. We find that forest edges are consistently warmer on average than interiors, with the magnitude of warming varying with biome type and season. During summer months, surface temperature at edges frequently exceeds the optimal temperature for vegetation productivity, particularly in tropical forests. These results suggest that continued loss of interior forest will reduce the capacity of remnant forests to buffer local climate conditions, potentially hampering ecosystem productivity and resilience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12328228PMC
http://dx.doi.org/10.1038/s43247-025-02626-1DOI Listing

Publication Analysis

Top Keywords

forest edges
12
vegetation productivity
8
surface temperature
8
forest
5
edges globally
4
globally warmer
4
warmer interiors
4
interiors exceed
4
exceed optimal
4
optimal temperatures
4

Similar Publications