A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Translational Inhibition of Slug by Pdcd4 Contributes to Invasion Inhibition in Colorectal Cancer Cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Colorectal cancer (CRC) metastasis remains a major cause of mortality, driven by epithelial-to-mesenchymal transition (EMT) and invasion. Programmed cell death 4 (Pdcd4), a tumor suppressor, is known to inhibit translation via interaction with eukaryotic initiation factor 4A (eIF4A). Previous studies have established that Pdcd4 suppresses stress-activated protein kinase 1-interacting protein 1 (Sin1) translation through the mTORC2-Akt axis, thereby downregulating Snail expression and EMT in CRC cells. However, whether Pdcd4 directly regulates Slug, another critical EMT transcription factor, remains unexplored.

Method: PDCD4 shRNA and SLUG siRNA were used to knock down Pdcd4 and Slug in colorectal cancer cells, respectively. The sucrose gradient fractionation was performed to determine SLUG translation. A luciferase reporter assay was used to determine the role of the SLUG 5' untranslated region (5'UTR) on Pdcd4 inhibition. The effect of Slug on promoting invasion was determined by Matrigel invasion assays.

Result: Knockdown of Pdcd4 in colorectal cancer cells increased Slug protein levels without altering SLUG mRNA abundance. Sucrose gradient fractionation revealed that Pdcd4 knockdown elevated the proportion of SLUG mRNA in polysome fractions, demonstrating Pdcd4-mediated suppression of SLUG translation. To validate the mechanism, the SLUG 5'UTR was cloned and fused to a luciferase reporter and named SLUG-5'UTR-Luc. Pdcd4 knockdown markedly enhanced SLUG-5'UTR-Luc activity; whereas, ectopic Pdcd4 expression suppressed it, indicating that the SLUG 5'UTR is critical for Pdcd4-mediated translational repression. Treatment with the eIF4A inhibitor silvestrol substantially reduced Slug protein levels and SLUG-5'UTR-Luc activity. In addition, Pdcd4 overexpression decreased Slug protein abundance and restored E-cadherin expression. Notably, Slug knockdown in Pdcd4-deficient cells rescued E-cadherin expression and abrogated the invasive phenotype. These findings suggest that up-regulation of Slug translation by Pdcd4 knockdown contributes to enhanced invasion.

Conclusion: Pdcd4 suppresses colorectal cancer invasion by translationally downregulating Slug expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12336670PMC
http://dx.doi.org/10.1002/cam4.71145DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
20
slug
18
pdcd4
14
cancer cells
12
slug translation
12
slug protein
12
pdcd4 knockdown
12
inhibition slug
8
pdcd4 suppresses
8
sucrose gradient
8

Similar Publications