Simulation peptide toxicity using the fragments of local symmetry in amino acid sequences.

Biosystems

Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, 1400 J. R. Lynch Street, P.O. Box 17910, Jackson, MS, 39217, USA.

Published: October 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An efficient scheme for modeling peptide toxicity is proposed and applied. The peptide cytotoxicity is calculated in the form of a mathematical function of its constituent amino acids, represented by single-symbol abbreviations. It was found that considering the so-called fragments of local symmetry can significantly increase the predictive potential of the proposed models. The best model gives for validation set value of Matthews correlation coefficient 0.7 on the set of 2784 peptides. The prospects for applying the ideas of infodynamics to research activities related to modeling the biochemical behavior of peptides are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2025.105554DOI Listing

Publication Analysis

Top Keywords

peptide toxicity
8
fragments local
8
local symmetry
8
simulation peptide
4
toxicity fragments
4
symmetry amino
4
amino acid
4
acid sequences
4
sequences efficient
4
efficient scheme
4

Similar Publications

Development and application of dialdehyde starch-grafted ε-polylysine copolymers as eco-friendly fruit detergents.

Food Chem

September 2025

Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; State Key Laboratory of Food Science a

Chemical detergents are extensively used to remove pesticide residues and foodborne pathogens on fresh fruits, but their residues are toxic to humans. To address this issue, a dual-functional starch copolymer, specifically dialdehyde starch-grafted ε-polylysine copolymer (DIA-ε-PL starch), was synthesized utilizing native starch with surfactant properties and the natural antimicrobial cationic peptide ε-polylysine (ε-PL). The effectiveness of DIA-ε-PL starch as a fruit detergent was subsequently evaluated.

View Article and Find Full Text PDF

From glycine peptides uptake to toxin surge: Decoding adaptation mechanisms under organic nitrogen enrichment in Microcystis aeruginosa.

J Environ Manage

September 2025

State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing, 210023, China. Electronic address:

The structural specificity of organic nitrogen sources in modulating cyanobacterial physiology and toxin production remains poorly understood. This study systematically evaluated the bioavailability of exogenous glycine peptides in Microcystis aeruginosa (M. aeruginosa) and their regulatory roles in algal growth and microcystins (MCs) synthesis through an integrated physiological and transcriptomic approach.

View Article and Find Full Text PDF

Cardiotoxicity remains a major clinical challenge associated with various environmental and chemotherapeutic toxicants. Sunitinib (SNB) is a potent targeted cancer drug that is reported to induce severe organ damage including renal failure. Cirsiliol (CSL) is a natural flavone that exhibits marvelous pharmacological properties.

View Article and Find Full Text PDF

Proteomic characterization and lethality of the venom of the Black Judean scorpion, Hottentotta judaicus (Buthidae): expanded toxin diversity and revisited toxicological significance.

Arch Toxicol

September 2025

Laboratorio de Proteómica, Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, 11501, Costa Rica.

The scorpion Hottentotta judaicus inhabits the Levant region of the Middle East, including Lebanon, Jordan, Palestine, and Israel. While previous research focused on its insecticidal properties and sodium-channel-targeting toxins, its venom remains largely unexplored using modern proteomic approaches. We analyzed the venom composition of H.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains a major global health burden, necessitating more effective and selective therapeutic approaches. Nanocarrier-based drug delivery systems offer significant advantages by enhancing drug accumulation in tumors, reducing off-target toxicity, and overcoming resistance mechanisms. This review provides a comprehensive overview of recent advancements in nanocarriers for CRC therapy, including passive targeting the enhanced permeability and retention (EPR) effect, and active targeting strategies that exploit specific tumor markers using ligands such as antibodies, peptides, and aptamers.

View Article and Find Full Text PDF