Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A dual-emission ratiometric sensing platform was developed for sensitive and selective detection of thiram, a toxic dithiocarbamate fungicide, by integrating fluorescence and room temperature phosphorescence (RTP) signals. The system employs boron-doped silane-functionalized carbon dots (RhB-CDs@SiO@BA) with Rhodamine B (RhB) to establish Förster resonance energy transfer (FRET)-mediated dual emission at 440/570 nm (fluorescence) and 490/590 nm (phosphorescence). The Cu-thiram complex selectively quenched both signals via inner filter effect (IFE), enabling precise quantification of thiram within a linear range of 0.1-120 μM and achieving a detection limit of 0.056 μM. The sensor exhibited excellent selectivity for thiram in the presence of common pesticides and ions, while maintaining robust stability under thermal, UV, and long-term storage conditions. Validated in real food samples (pears, cabbages), the method exhibited recoveries of 85.72 %-121.27 % and the detection was achieved in less than 15 min. This work enabled rapid and efficient monitoring of thiram residues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2025.145825 | DOI Listing |