98%
921
2 minutes
20
Advanced maternal age is closely associated with reduced oocyte and embryo quality, impaired mitochondrial function, and decreased implantation potential. Ferroptosis, a regulated form of cell death driven by iron-dependent lipid peroxidation, has emerged as a key contributor to the age-related decline in reproductive capacity. In this study, we investigated the therapeutic potential of mitochondria-targeted 001 (MIT-001), a novel anti-ferroptosis agent, to improve the quality of preimplantation embryos derived from aged female mice. In vitro assays using human granulosa-like KGN cells demonstrated that MIT-001 effectively protected against Ras-selective lethal 3 (RSL3)-induced ferroptosis, restored cell viability, and recovered estradiol synthesis, indicating that steroidogenic function was restored. To evaluate the efficacy of MIT-001 in vitro, preimplantation embryos were collected from aged BDF1 mice and cultured in the presence of MIT-001. Embryos treated with MIT-001 showed significantly improved developmental progression and increased blastocyst formation rates compared with untreated controls. Furthermore, MIT-001 enhanced the mitochondrial membrane potential and oxygen consumption rate, as assessed by live confocal imaging and Seahorse assays, suggesting that mitochondrial function was restored. These findings highlight the role of ferroptosis in deterioration of embryo quality associated with maternal aging and demonstrate that MIT-001 mitigates ferroptosis-induced cellular damage. In conclusion, MIT-001 is a promising candidate for therapeutic intervention to improve clinical reproductive outcomes in aged females by targeting mitochondrial dysfunction and regulated cell death pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2025.118393 | DOI Listing |
Anal Chim Acta
November 2025
Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China. Electronic address:
Egg yolk immunoglobulin (IgY) has emerged as a promising alternative to monoclonal antibodies (mAbs) due to its facile extraction, higher yield, and greater tolerance to organic solvents. This work developed a selective IgY antibody against bongkrekic acid (BA) and isobongkrekic acid (IsoBA), the lethal toxins produced by Burkholderia gladioli pv. Cocovenenans (BGC), which led to severe food poisoning incidents and resulted in casualties.
View Article and Find Full Text PDFMol Genet Genomic Med
September 2025
Cytogenetic Laboratories, Shahid Beheshti Hospital, Hamadan University of Medical Sciences, Hamadan, Iran.
Background: Recurrent Implantation Failure (RIF) is defined as the inability to establish pregnancy despite high-quality embryo transfer after the application of at least three consecutive in vitro fertilization (IVF)/intracytoplasmic sperm injection-embryo transfer procedures. Chromosomal abnormalities are one of the primary reasons for pregnancy failure, miscarriage, and birth defects in both natural conception and IVF pregnancies. This study was to evaluate the incidence of chromosomal abnormalities in peripheral blood samples from 100 couples who experienced RIF.
View Article and Find Full Text PDFHum Reprod
September 2025
IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Rome, Italy.
Study Question: Do IVF laboratory workflows influence the mean blastulation rate per cohort of inseminated metaphase II oocytes (m-BR)?
Summary Answer: Neither the total number of procedures nor the workload per operator affected m-BR; instead, each additional hour in the interval from ovulation trigger to oocyte denudation (range 36-44 h) was associated with a measurable decline, especially beyond the 40-h threshold.
What Is Known Already: Control of laboratory conditions and standardized protocols are essential for optimizing m-BR in IVF. While advancements in technology and culture systems have improved ART outcomes, the effect of laboratory managerial decisions and procedural timing on embryological outcomes remains unclear.
Hum Reprod
September 2025
Boston IVF-IVIRMA Global Research Alliance, Waltham, MA, USA.
Study Question: Does a high proportion of immature oocytes impact embryo development and live birth rates in IVF-ICSI cycles?
Summary Answer: While a high proportion of immature oocytes is associated with lower blastocyst formation and reduced preimplantation genetic testing for aneuploidy (PGT-A) utilization, live birth rates remain comparable when key confounders-such as age, BMI, gonadotropin dosage, and metaphase-II (MII) count-are balanced, but cycles with a very low MII proportion resulted in fewer embryo transfers, which is quantitatively limiting, even if embryo quality appears unaffected.
What Is Known Already: Previous studies have linked a lower proportion of mature oocytes (MII) to decreased fertilization rates, abnormal embryo development, and lower pregnancy and live birth rates. However, it remains unclear whether these outcomes are due to quantitative limitations (fewer mature oocytes available) or qualitative deficiencies (intrinsic oocyte quality issues).
Biol Reprod
September 2025
Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Qc, Canada.
Deep 3D imaging of oocytes shows several difficulties. Their large size, spherical shape causes depth-dependent artefactual shadow in the middle, resulting from refractive index mismatches induced by turbid organelles and lipid droplets. These mismatches lead to optical aberrations, increasing the laser spot size at the confocal pinhole plan and causing significant attenuation of fluorescence intensity making difficult to clearly image fine structures such as the transzonal projections (TZPs) connecting cumulus cells and the oocyte.
View Article and Find Full Text PDF