A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

CTAB modified SnO PEDOT PSS heterojunction humidity sensor with enhanced sensitivity stability and machine learning evaluation. | LitMetric

CTAB modified SnO PEDOT PSS heterojunction humidity sensor with enhanced sensitivity stability and machine learning evaluation.

Sci Rep

Marwadi University Research Center, Department of Computer Engineering, Faculty of Engineering and Technology, Marwadi University, Rajkot, 360003, Gujarat, India.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study presents the development of a high-performance resistive humidity sensor based on a cetyltrimethylammonium bromide (CTAB)-assisted tin oxide (SnO₂) nanostructured thin film integrated with a Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) (PEDOT: PSS)/SnO₂ heterojunction. The sensor design incorporates CTAB at varying weight percentages (0%, 6%, 11%, 16%, and 20%) during the hydrothermal synthesis of SnO₂ to regulate crystal growth, morphology, and surface area. The sample with 20 wt% CTAB (SnO-5) exhibited a flower-like stacked nanostructure, confirmed via field emission scanning electron microscopy (FESEM), which significantly enhanced water molecule adsorption and charge transport pathways. X-ray diffraction (XRD) analysis confirmed the tetragonal rutile phase of SnO₂ with decreasing crystallite size from 12.2 nm (nm) to 4.8 nm as CTAB concentration increased. The incorporation of PEDOT: PSS, a p-type conducting polymer, onto the SnO₂ layer via spin coating formed a p-n heterojunction, which improved charge separation and reduced recombination, thereby enhancing electrical conductivity and sensor performance. Electrochemical impedance spectroscopy (EIS) and current-voltage (J-V) measurements demonstrated that SnO-5 exhibited a low internal resistance (1.1 kilo ohms (kΩ)), a minimal cut-in voltage (0.071 Volts (V)), and a high current response (2.645 micro Amps.(µA)), indicating efficient carrier transport. The optimized SnO-5 sensor achieved a high sensitivity of 85.7%, a rapid response time of 14 s (s), and a quick recovery time of 7 s, with low hysteresis (1.60%) across a broad humidity range (5-97% Relative Humidity (RH)), outperforming several existing humidity sensing platforms. The synergistic effects of CTAB-induced nanostructuring and heterojunction engineering played a pivotal role in improving moisture interaction, charge mobility, and structural stability. Furthermore, to validate real-time application feasibility, machine learning (ML) algorithms were implemented to model and predict sensor behavior. Among the tested models, Random Forest (RF) Regression achieved the highest predictive accuracy (R² = 0.99), confirming the sensor's robustness and reproducibility in dynamic environments. The proposed sensor's outstanding performance, in combination with ML-enhanced evaluation, positions it as a promising candidate for next-generation humidity monitoring systems in industrial, environmental, and biomedical applications, including respiratory diagnostics and non-invasive health monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334569PMC
http://dx.doi.org/10.1038/s41598-025-14184-9DOI Listing

Publication Analysis

Top Keywords

pedot pss
8
humidity sensor
8
machine learning
8
sno-5 exhibited
8
humidity
6
sensor
6
ctab
4
ctab modified
4
modified sno
4
sno pedot
4

Similar Publications