A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

General Purpose Deep Learning Attenuation Correction Improves Diagnostic Accuracy of SPECT MPI: A Multicenter Study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) uses computed tomography (CT)-based attenuation correction (AC) to improve diagnostic accuracy. Deep learning (DL) has the potential to generate synthetic AC images, as an alternative to CT-based AC.

Objectives: This study evaluated whether DL-generated synthetic SPECT images could enhance accuracy of conventional SPECT MPI.

Methods: Study investigators developed a DL model in a multicenter cohort of 4,894 patients from 4 sites to generate simulated SPECT AC images (DeepAC). The model was externally validated in 746 patients from 72 sites in a clinical trial (A Phase 3 Multicenter Study to Assess PET Imaging of Flurpiridaz F 18 Injection in Patients With CAD; NCT01347710) and in 320 patients from another external site. In the first external cohort, the study assessed the diagnostic accuracy for obstructive coronary artery disease (CAD)-defined as left main coronary artery stenosis ≥50% or ≥70% in other vessels-for total perfusion deficit (TPD). In the latter, the study completed change analysis and compared quantitative scores for AC, DeepAC, and nonattenuation correction (NC) with clinical scores.

Results: In the first external cohort (mean age, 63 ± 9.5 years; 69.0% male), 206 patients (27.6%) had obstructive CAD. The area under the receiver-operating characteristic curve (AUC) of DeepAC TPD (0.77; 95% CI: 0.73-0.81) was higher than the NC TPD (AUC: 0.73; 95% CI: 0.69-0.77; P < 0.001). In the second external cohort, DeepAC quantitative scores had closer agreement with actual AC scores compared with NC.

Conclusions: In a multicenter external cohort, DeepAC improved prediction performance for obstructive CAD. This approach could enhance diagnostic accuracy in facilities using conventional SPECT systems without requiring additional equipment, imaging time, or radiation exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcmg.2025.06.010DOI Listing

Publication Analysis

Top Keywords

diagnostic accuracy
16
external cohort
16
deep learning
8
attenuation correction
8
multicenter study
8
computed tomography
8
spect images
8
conventional spect
8
patients sites
8
coronary artery
8

Similar Publications