Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Unlabelled: Self-organized criticality is a hallmark of complex dynamic systems at phase transitions. Systems that operate at or near criticality have large-scale fluctuations or "avalanches", the frequency and duration power of which are best fit with a power law revealing them to be scale-free and fractal, and such power laws are ubiquitous. It is an attractive concept in neuroscience since spiking avalanches are exhibited by neural tissue, and may underpin how minuscule events could scale up to circuits and provide adaptive psychobiological function. Much is yet to be understood about criticality in the healthy brain and in disorders such as addiction, as drugs may alter the critical state's "tuning" to generate drug seeking and dysphoria. Thus, here a novel toolset was developed to use neural avalanches and their self-similarity, rather than power law fit slope exponents as is canonically done, to quantify criticality in a previously collected high-density electrophysiological corticostriatal dataset from a mouse model of early cocaine abstinence. During behavioral quiescence, in the prefrontal cortex but not ventral striatum of cocaine-dosed mice, it was found that critical tuning is enhanced compared to drug-free controls. Additionally, an empirical biological demonstration of complexity's theoretical correlation to criticality was shown in drug-free mice, was exponentially enhanced in drug-treated cortex, but was absent in the drug-treated striatum. As shown, quantifying criticality grants experimental support for the "critical brain hypothesis" and allows for statistical interpretation of inter-subject variability and development of further testable hypotheses in systems neuroscience.
Significance Statement: The "critical brain hypothesis" asserts neural networks are comparable to material in phase transitions at a critical point, their "avalanches" of system-wide spike bursts best seen in log-log plots of probability vs. avalanche size or duration, with slope following a scale-free or fractal power law. In discussing criticality, "critical tuning" is mentioned but quantification thereof left for later experimentation, despite being necessary for a scientific hypothesis. Presented are methods to quantify critical tuning through assessing similarity or fractalness among corticostriatal avalanches collected using high-density electrophysiology in cocaine-conditioned mice, along with an empirical confirmation of the mathematical concept that data complexity correlates with criticality. Interestingly, cocaine enhances critical tuning in cortex and aberrantly modifies complexity in a region-specific manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12330746 | PMC |
http://dx.doi.org/10.1101/2022.08.02.501652 | DOI Listing |