Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Tom70 mediates mitochondrial protein import by coordinating the transfer of cytosolic preproteins from Hsp70/Hsp90 to the translocase of the outer membrane (TOM) complex. In humans, the cytosolic domain of Tom70 (Tom70c) is entirely -helical and comprises modular TPR motifs divided into an N-terminal chaperone-binding domain (NTD) and a C-terminal preprotein-binding domain (CTD). However, the mechanisms linking these functional regions remain poorly understood. Here, we present the 2.04 Å crystal structure of unliganded Tom70c, revealing two distinct conformations - open and closed - within the asymmetric unit. These states are stabilized in part by interdomain crystal contacts and are supported in solution by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulations. Principal component and dynamical network analyses reveal a continuum of motion linking the NTD and CTD via key structural elements, notably residues in helices 7, 8, and 25. Engagement of the CTD by the viral protein Orf9b interrupts this network, stabilizing a partially-closed intermediate conformation and dampening dynamics at distal NTD sites. Collectively, our findings lay the groundwork for understanding Tom70 allostery and provide a framework for dissecting its mechanistic roles in chaperone engagement, mitochondrial import, and viral subversion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12330529 | PMC |
http://dx.doi.org/10.1101/2025.07.19.665690 | DOI Listing |