A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Vascularization of kidney organoids: different strategies and perspectives. | LitMetric

Vascularization of kidney organoids: different strategies and perspectives.

Front Urol

Developmental Biology Laboratory, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Kidney diseases such as glomerulopathy and nephron dysfunction are estimated to grow to more than 900 million cases by 2030, in 45% of which kidney transplantation will be required, representing a major challenge for biomedicine. A wealth of progress has been made to model human diseases using induced pluripotent stem cells (iPSCs) differentiated to a variety of organoids, including kidney organoids, and in developing various microfluidics-based organ-on-a-chip (OoC) systems based on them. With the combination of targeted gene editing capacities, relevant polymorphic genetic variants can be established in such organoid models to advance evidence-based medicine. However, the major drawback of the current organoid disease models is the lack of functional endothelial vasculature, which especially concerns the kidney, the function of which is strongly associated with blood flow. The design of novel medical devices using tissue engineering approaches such as kidney organoids is also strongly dependent on the understanding of the fundamental principles of nephrogenesis and the vascularization of organs and tissues. Developmental vascularization of the kidney has been an area of intense research for decades. However, there is still no consensus among researchers on how exactly the vascularization of the kidney occurs in normal and pathological conditions. This lack of consensus is partly due to the lack of an appropriate model system to study renal vascularization during nephrogenesis. In this review, we will describe recent progress in the areas of kidney vasculature development, kidney organoids in general and assembled on microfluidic devices in particular. We will focus on the vasculature of kidney organoids in microfluidic OoC model systems to study kidney diseases and on the perspectives of tissue engineering for the modeling of kidney diseases and the design of bioartificial medical devices. We also aim to summarize the information related to the key mechanisms of intercellular communication during nephrogenesis and the formation of the renal vasculature in an OoC setup.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12327341PMC
http://dx.doi.org/10.3389/fruro.2024.1355042DOI Listing

Publication Analysis

Top Keywords

kidney organoids
20
vascularization kidney
12
kidney
12
kidney diseases
12
medical devices
8
tissue engineering
8
organoids
6
vascularization
5
organoids strategies
4
strategies perspectives
4

Similar Publications