Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Emotion processing engages multiple large-scale brain networks. However, prior investigations relying on a priori, contrast-based models of brain activity obscure networks' distinct temporal dynamics and roles in task performance. Here, we performed tensor independent component analysis to identify and track concurrent brain processes, including those with non-canonical dynamics, during the emotional face matching task (EFMT) in healthy young adults (n = 413; n = 416 replication). Ten EFMT-recruited large-scale brain networks were identified, reflecting flexible recoupling of visual association cortex to diverse non-visual networks. These networks collectively engaged 74% of cortex and more strongly explained variability in cognition and a performance-based index of emotion interference than contrast-based amygdala activation/connectivity. Variability in EFMT-recruited network activity was more strongly linked to variability in cognition than affect. Findings reveal a rich landscape of brain activity under the surface of contrast-based fMRI analyses and deepen insights into the distinct brain processes underlying subcomponents of emotional face processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332188PMC
http://dx.doi.org/10.1038/s42003-025-08543-5DOI Listing

Publication Analysis

Top Keywords

large-scale brain
12
emotional face
12
face matching
8
matching task
8
brain networks
8
brain activity
8
brain processes
8
variability cognition
8
brain
7
disentangling large-scale
4

Similar Publications

Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.

View Article and Find Full Text PDF

Despite the functional specialization in visual cortex, there is growing evidence that the processing of chromatic and spatial visual features is intertwined. While past studies focused on visual field biases in retina and behavior, large-scale dependencies between coding of color and retinotopic space are largely unexplored in the cortex. Using a sample of male and female volunteers, we asked whether spatial color biases are shared across different human observers, and whether they are idiosyncratic for distinct areas.

View Article and Find Full Text PDF

Blood flow in the human cerebral cortex: Large-scale pial vascularization and 1D simulation.

PLoS Comput Biol

September 2025

Department of Mathematical and Computational Methods, National Laboratory for Scientific Computing, Petrópolis, Brazil.

Understanding cerebral circulation is crucial for early diagnosis and patient-oriented therapies for brain conditions. However, blood flow simulations at the organ scale have been limited. This work introduces a framework for modeling extensive vascular networks in the human cerebral cortex and conducting pulsatile blood flow simulations.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a major demyelinating disorder that affects the central nervous system. A growing body of evidence has revealed the involvement of coagulation pathway in the pathogenesis of MS. However, the causal association between coagulation factors and MS is still unclear.

View Article and Find Full Text PDF