A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Defective collagen VI-NG2 axis impairs pericyte balance between proliferation and quiescence in COLVI-related myopathies. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Collagen VI-related myopathies (COLVI-RMs) are rare genetic disorders caused by impaired assembly and secretion of COLVI, a key extracellular matrix (ECM) protein. COLVI deficiency alters ECM architecture and biomechanics, leading to progressive muscle fiber damage and connective tissue abnormalities. While pericytes are emerging as key players in muscle regeneration due to their myogenic potential, their role in COLVI-RMs remains unclear. This study investigates pericyte involvement in COLVI-RMs, focusing on the interaction between COLVI and neural/glial antigen 2 (NG2), a proteoglycan expressed on pericyte membranes. Muscle biopsies from COLVI-RMs patients revealed abnormal pericyte distribution, reduced vessel coverage, and thickened capillary basement membranes. In vitro, healthy pericytes formed a dense COLVI network, while COLVI-RM-derived pericytes displayed a disrupted matrix and impaired cell-ECM interaction. Proximity ligation assays demonstrated a significant reduction in COLVI-NG2 binding in COLVI-RM pericytes, correlating with altered balance between proliferative and quiescent states. In turn, defects in signaling pathways related to proliferation (Akt/mTOR and Wnt/β-catenin pathways) and quiescence (N-cadherin, Notch3, FOXO3A) were identified, revealing a marked quiescent state. In vitro inhibition of the COLVI-NG2 binding in healthy pericytes reproduced these pathological features, underscoring the functional relevance of this molecular axis. Taken together, the data here reported revealed an unexpected role of NG2-COLVI binding on pericytes status. It follows that the impairment of functional binding between NG2 and COLVI could have important consequences on the pericytes myogenic potential in COLVI-RMs, and consequently on the muscle regeneration. Finally, targeting defective pericytes could provide potential therapeutic strategies for these debilitating diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2025.168012DOI Listing

Publication Analysis

Top Keywords

pericytes
8
muscle regeneration
8
myogenic potential
8
healthy pericytes
8
colvi-ng2 binding
8
colvi-rms
5
colvi
5
defective collagen
4
collagen vi-ng2
4
vi-ng2 axis
4

Similar Publications