A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fragile foundations: succession patterns of bacterial communities in fine woody debris and soil under long-term microclimate influence. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Fine woody debris (FWD; deadwood < 10 cm diameter) is a crucial but often overlooked component of forest ecosystems. It provides habitat for microbial communities and enhances soil fertility through nutrient cycling. This role is especially important in managed forests, which typically have limited deadwood stocks. Climate change is increasing forest disturbances and expanding early successional forests with low canopy cover, yet the effects on microbial communities and related processes remain poorly understood.

Results: In a ten-year canopy manipulation experiment, we examined the decomposition of FWD of Fagus sylvatica and Abies alba. Increased canopy openness significantly decreased bacterial diversity in decomposing FWD and altered the community composition in surrounding soil. Decomposition time was the main factor shaping bacterial community structure in FWD, with tree species and canopy cover also contributing. We identified bacterial groups involved in carbohydrate degradation, fungal biomass breakdown, and nitrogen fixation. Importantly, bacterial communities in fully decomposed FWD remained distinct from soil communities.

Conclusions: Deadwood decomposition and nutrient cycling are driven by complex ecological interactions. Microbial community dynamics are influenced by the interplay of FWD decomposition stage, tree species, and microclimatic conditions. Bacterial communities, although less frequently studied in this context, appear more stable over time than previously studied fungi. This stability may help sustain decomposition processes and nutrient turnover under the environmental variability associated with global change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12330196PMC
http://dx.doi.org/10.1186/s40793-025-00756-9DOI Listing

Publication Analysis

Top Keywords

fine woody
8
woody debris
8
fragile foundations
4
foundations succession
4
succession patterns
4
patterns bacterial
4
bacterial communities
4
communities fine
4
debris soil
4
soil long-term
4

Similar Publications