A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Determination of intrinsic cellular electrical and mechanical properties using micro/nano manipulation techniques. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Single-mode biophysical fingerprints have specific overlap when cell heterogeneity is analyzed. The cross-sensitivity between these parameters results in significant fuzzy intervals in cell phenotype classification based on one-dimensional features, making it difficult to accurately separate cell clusters with similar biophysical characteristics but different functional subgroups. Therefore, developing cross-scale multi-modal synchronous detection technology for live cell parameters and building a machine learning-based multi-dimensional parameter coupling analysis model will be a key path to breaking through the bottleneck in the accurate analysis of cell heterogeneity. Hence, this review presents five micro/nano manipulation methods for determining intrinsic cellular electrical and mechanical properties. The working principles of these methods are thoroughly explained, together with their applications for extracting the intrinsic cellular electrical and mechanical properties of cells. Recently emerged artificial intelligence-facilitated methods are also discussed. This review finishes with a discussion of the future prospects of these five methods. Our conclusion is that understanding the multi-modal spectrum of intrinsic cellular electrical and mechanical properties will be a major breakthrough in uncovering the heterogeneity of diseases and building personalized diagnosis and treatment systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5sm00529aDOI Listing

Publication Analysis

Top Keywords

intrinsic cellular
16
cellular electrical
16
electrical mechanical
16
mechanical properties
16
micro/nano manipulation
8
cell heterogeneity
8
cell
5
determination intrinsic
4
cellular
4
electrical
4

Similar Publications