98%
921
2 minutes
20
Triple-negative breast cancer (TNBC) is an aggressive subtype defined by the lack of estrogen receptors (ER), progesterone receptors (PR), and HER2 expression, resulting in limited therapeutic options. Given this challenge, this study explores caffeine, a widely consumed stimulant, as a potential anticancer agent, particularly for TNBC. Although caffeine has demonstrated stimulatory and inhibitory effects on telomerase in other cancer types, its influence on telomerase activity in TNBC remains uncharacterized. This study investigates the impact of caffeine concentrations (10, 15, and 20 mM) on cell viability, proliferation, apoptosis, ultrastructure, and the expression of apoptosis-related genes () and telomerase activity () in MDA-MB-231 cells. Our findings showed that caffeine significantly reduces cell viability and induces early apoptosis with a dose-dependent effect. Morphological changes consistent with early apoptosis were observed, and an increased ratio indicated the activation of the intrinsic apoptosis pathway. Additionally, caffeine exhibited upregulation of mRNA expression, which may reflect a compensatory response to cellular stress induced by caffeine. These results underscore the multifaceted effects of caffeine on TNBC cells, highlighting its potential not only as an apoptosis inducer but also as a modulator of telomerase activity. Given its accessibility, low toxicity, and established safety profile, caffeine presents an exciting avenue for further research as a complementary or standalone therapeutic strategy for TNBC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320964 | PMC |
http://dx.doi.org/10.22088/IJMCM.BUMS.14.2.606 | DOI Listing |
Biogerontology
September 2025
School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
Ashwagandha (Withania somnifera), a revered herb in Ayurvedic medicine, has gained significant scientific recognition for its potential to promote healthy aging. Traditionally used as a Rasayana or rejuvenator, this potent adaptogen helps the body manage stress and enhance vitality. This review synthesises extensive evidence for its multifaceted anti-aging capabilities, which target key hallmarks of the aging process.
View Article and Find Full Text PDFJ Biotechnol
September 2025
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO. 1, Wenyuan Road, Nanjing 210023, People's Republic of China. Electronic address:
Cycloastragenol (CA), the triterpenoid aglycone of astragaloside (ASI), is a telomerase activator and potential anti-aging drug with broad application prospects. Due to the rapid increase of its market demand in recent years, efficient production of CA has attracted increasing attention. In this study, the novel β-xylosidase XylO2 from Aspergillus aculeatus was identified through genome mining.
View Article and Find Full Text PDFBiogerontology
September 2025
Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
Epitalon, a naturally occurring tetrapeptide, is known for its anti-aging effects on mammalian cells. This happens through the induction of telomerase enzyme activity, resulting in the extension of telomere length. A strong link exists between telomere length and aging-related diseases.
View Article and Find Full Text PDFBiomarkers
September 2025
Department of Gynecology, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou 510630, China.
Objective: To investigate the associations between oxidative DNA damage biomarkers [levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), telomere length (TL), human telomerase reverse transcriptase (hTERT), telomerase activity (TA) and polymorphisms of human 8-oxoguanine glycosylase 1 (hOGG1) or X-ray repair cross-complementing group 4 (XRCC4)] and endometriosis (EMT) by a meta-analysis.
Methods: Five databases were searched until August 2024. Stata 15.
Curr Genet
September 2025
Department of Biology, Lund University, Sölvegatan 35, SE-223 62, Lund, Sweden.
Telomerase plays an important role in sustaining eukaryotic linear chromosomes, as elongation of telomeres is needed to counterbalance the shortening occurring in each replication round. Nevertheless, in telomerase-deficient cells, Alternative Lengthening of Telomeres (ALT) pathways can maintain telomeres by employing recombination-based mechanisms. In the budding yeast Naumovozyma castellii, effective activation of the ALT pathway leads to bypass of senescence and supports long-term growth.
View Article and Find Full Text PDF