Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The remediation of multicomponent wastewater containing high-valent heavy metals and organic pollutants remains a significant environmental challenge. Visible-light-driven photocatalysis holds promise for concurrent pollutants decontamination, but is often hindered by sluggish interfacial charge transfer, rapid electron-hole recombination, and inadequate redox-active carriers. In this work, we present a dual-vacancy-incorporated BiWO (V-BWO) photocatalyst, featuring strategically introduced oxygen vacancies (OVs) and bismuth vacancies (BiVs), to overcome these constraints. Integrated theoretical and experimental investigations uncover a defect-mediated charge dynamics mechanism: OVs function as shallow electron traps enabling ultrafast charge capture, while BiVs function as deep relaxation sites that-under Cr(VI)-induced electron quenching-synergistically stabilize holes and extend their lifetime. This synergistic vacancy modulation achieves exceptional performance: a ciprofloxacin (CIP) degradation rate constant of 3.3 × 10 min with concurrent Cr(VI)-to-Cr(III) conversion (0.036 mmol/L reduced after 60 min). Notably, the catalyst sustains robust > 80.6 % contaminant removal efficiency in continuous-flow operation across diverse pollutants including CIP, bisphenol A (BPA), and rhodamine B (RhB). These findings elucidate the pivotal role of dual-defect states in tuning carrier dynamics and establishes a robust platform for integrated photocatalytic detoxification of multicomponent wastewater streams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.139422 | DOI Listing |