Hybrid deep learning models for text-based identification of gene-disease associations.

Bioimpacts

Department of Computer Science, Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, Iran.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Identifying gene-disease associations is crucial for advancing medical research and improving clinical outcomes. Nevertheless, the rapid expansion of biomedical literature poses significant obstacles to extracting meaningful relationships from extensive text collections.

Methods: This study uses deep learning techniques to automate this process, using publicly available datasets (EU-ADR, GAD, and SNPPhenA) to classify these associations accurately. Each dataset underwent rigorous pre-processing, including entity identification and preparation, word embedding using pre-trained Word2Vec and fastText models, and position embedding to capture semantic and contextual relationships within the text. In this research, three deep learning-based hybrid models have been implemented and contrasted, including CNN-LSTM, CNN-GRU, and CNN-GRU-LSTM. Each model has been equipped with attentional mechanisms to enhance its performance.

Results: Our findings reveal that the CNN-GRU model achieved the highest accuracy of 91.23% on the SNPPhenA dataset, while the CNN-GRU-LSTM model attained an accuracy of 90.14% on the EU-ADR dataset. Meanwhile, the CNN-LSTM model demonstrated superior performance on the GAD dataset, achieving an accuracy of 84.90%. Compared to previous state-of-the-art methods, such as BioBERT-based models, our hybrid approach demonstrates superior classification performance by effectively capturing local and sequential features without relying on heavy pre-training.

Conclusion: The developed models and their evaluation data are available at https://github.com/NoorFadhil/Deep-GDAE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12319213PMC
http://dx.doi.org/10.34172/bi.31226DOI Listing

Publication Analysis

Top Keywords

deep learning
8
gene-disease associations
8
cnn-gru-lstm model
8
models
5
hybrid deep
4
learning models
4
models text-based
4
text-based identification
4
identification gene-disease
4
associations introduction
4

Similar Publications

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Clinical evaluation of motion robust reconstruction using deep learning in lung CT.

Phys Eng Sci Med

September 2025

Department of Radiology, Otaru General Hospital, Otaru, Hokkaido, Japan.

In lung CT imaging, motion artifacts caused by cardiac motion and respiration are common. Recently, CLEAR Motion, a deep learning-based reconstruction method that applies motion correction technology, has been developed. This study aims to quantitatively evaluate the clinical usefulness of CLEAR Motion.

View Article and Find Full Text PDF

Predicting complex time series with deep echo state networks.

Chaos

September 2025

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

Although many real-world time series are complex, developing methods that can learn from their behavior effectively enough to enable reliable forecasting remains challenging. Recently, several machine-learning approaches have shown promise in addressing this problem. In particular, the echo state network (ESN) architecture, a type of recurrent neural network where neurons are randomly connected and only the read-out layer is trained, has been proposed as suitable for many-step-ahead forecasting tasks.

View Article and Find Full Text PDF

Purpose To assess the effectiveness of an explainable deep learning (DL) model, developed using multiparametric MRI (mpMRI) features, in improving diagnostic accuracy and efficiency of radiologists for classification of focal liver lesions (FLLs). Materials and Methods FLLs ≥ 1 cm in diameter at mpMRI were included in the study. nn-Unet and Liver Imaging Feature Transformer (LIFT) models were developed using retrospective data from one hospital (January 2018-August 2023).

View Article and Find Full Text PDF