A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enhancing bone tissue engineering with polyacrylonitrile electrospun scaffolds and graphene quantum dots: A comprehensive approach to regenerative medicine. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: In this study, we utilized human endometrial mesenchymal stem cells (EnMSCs), along with a novel fibrous nanocomposite scaffold made of polyacrylonitrile/metal-organic-framework (PAN/MOF-Cu) for bone tissue engineering. Additionally, we investigated the impact of graphene quantum dots (GQDs) as a stimulant for promoting osteogenic regeneration.

Methods: To assess our approach's effectiveness, four groups of rats were evaluated for the extent of bone tissue regeneration in their calvarial defects, 10 weeks post-surgery. Histomorphometry studies used various tissue staining methods, such as H&E and Masson's trichrome. Additionally, protein structures were extracted from the Protein Databank (PDB) and subjected to Molecular Docking using Molegro software.

Results: The findings revealed that the PAN/MOF-Cu scaffold possesses remarkable characteristics conducive to cell adhesion and growth. Furthermore, histomorphometry analysis confirmed the osteoconductive properties of PAN/MOF-Cu, suggesting its significant potential for application in critical-sized bone defects, particularly when combined with EnMSCs. Additionally, the implantation of scaffold/EnMSCs/GQDs demonstrated a greater enhancement in forming new bone relative to the other experimental groups. This suggests that the presence of GQDs significantly enhances the process of bone repair. Docking results further indicated that GQDs can potentially act as agonists to ER, FGFR3, TGF-βR, and frizzled-8 during osteogenesis.

Conclusion: These findings provide further confirmation that the nanocomposite/cells/GQDs combination serves as an excellent platform for bone tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12319219PMC
http://dx.doi.org/10.34172/bi.30835DOI Listing

Publication Analysis

Top Keywords

bone tissue
16
tissue engineering
12
graphene quantum
8
quantum dots
8
bone
6
tissue
5
enhancing bone
4
engineering polyacrylonitrile
4
polyacrylonitrile electrospun
4
electrospun scaffolds
4

Similar Publications