Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Temporomandibular disorder (TMD) significantly impairs the quality of life of patients due to chronic pain and limited jaw function. Many treatment options have been used such as pharmacologic management, physical therapy, oral appliance therapy, and surgery. However, effective treatment options remain limited. In this study, we investigated the potential of botulinum toxin (BoNT) as a therapeutic approach for TMD using a forced mouth opening (FMO)-induced TMD male mouse model. BoNT injection significantly alleviated mechanical hypersensitivity in the temporomandibular region over a 2-week period as demonstrated by von Frey behavioral tests. Additionally, the mouse grimace test confirmed that BoNT alleviated pain in mice. The open field test and pasta gnawing test showed that BoNT injection effectively alleviated mouth motor and food intake problems and did not cause impairments in general behavior. Moreover, direct observation of neural activity via in vivo Pirt-GCaMP3 calcium imaging of intact trigeminal ganglia (TG) revealed that BoNT suppressed both stimulus-evoked and spontaneous activity in TG neurons. Mechanistically, BoNT downregulated the expression of pain-promoting proteins (TRPV1, TRPA1, and TRPC1) and glutamate transporting protein (VGLUT2), thereby suppressing peripheral neural activity in the TG. In summary, our study identified a novel mechanism by which BoNT alleviates TMD pain. These new findings not only expand our understanding of the effects of BoNT on pain but also provide a new therapeutic approach to TMJ pain management. Temporomandibular disorders (TMD) affect jaw function and cause chronic TMJ pain, significantly impacting quality of life. However, effective and long-term treatment options remain limited. In this study, we explored the potential of botulinum neurotoxin (BoNT) as a novel therapeutic option using a physiologically relevant animal model and real-time imaging of TG nerve activity. This approach allowed us to examine how peripheral sensory signals contribute to pain in TMD and how targeted modulation may offer TMJ pain relief. This study offers insight into TMJ pain mechanisms and supports BoNT as a potential long-lasting treatment option.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1523/JNEUROSCI.2035-24.2025 | DOI Listing |