Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

TDP-43 proteinopathies are neurological disorders marked by the abnormal accumulation of TDP-43 in the cytoplasm. This mislocalization disrupts the normal function of the protein. In most cases, it is the wildtype (wt) form of the protein that is involved. An untargeted high-throughput screen of a single-chain variable fragment (scFv) library was performed using phage display against human full-length wt TDP-43. Two scFvs (B1 and D7) were retained following cellular expression (then termed intrabodies) and colocalization with cytoplasmic TDP-43 in vitro. We generated a 3D structure of full length wt TDP-43 in silico, and used it for epitope mapping. In a cellular model of TDP-43 proteinopathy, D7 enhanced the proteasomal degradation of the insoluble 35-kDa C-terminal fragment of TDP-43 and reversed some TDP-43-induced metabolomic alterations, particularly relating to the lipid metabolism. Our findings offer a new scFv intrabody that bind to human wtTDP-43 and modify cellular pathways associated with TDP-43 proteinopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12321133PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0322021PLOS

Publication Analysis

Top Keywords

tdp-43
10
scfv intrabody
8
cellular model
8
model tdp-43
8
tdp-43 proteinopathy
8
tdp-43 proteinopathies
8
intrabody targeting
4
targeting wildtype
4
wildtype tdp-43
4
tdp-43 presents
4

Similar Publications

Ambient Air Pollution and the Severity of Alzheimer Disease Neuropathology.

JAMA Neurol

September 2025

Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia.

Importance: Exposure to fine particulate matter air pollution (PM2.5) may increase risk for dementia. It is unknown whether this association is mediated by dementia-related neuropathologic change found at autopsy.

View Article and Find Full Text PDF

In vivo self-assembled siRNAs ameliorate neurological pathology in TDP-43-associated neurodegenerative disease.

Brain

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Provincial Key Laboratory of Non-human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Rege

Abnormal accumulation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Small interfering RNAs (siRNAs) targeting TDP-43 offer potential therapeutic strategies for these diseases. However, efficient and safe delivery of siRNAs to the central nervous system (CNS) remains a critical challenge.

View Article and Find Full Text PDF

A comprehensive understanding of the molecular mechanism underlying the Liquid-Liquid Phase Separation (LLPS) pathway of LCD-TDP43 remains a challenge in the context of its neuropathogenesis. The primary driving force behind the TDP-43 LLPS is the interplay of hydrophobic interactions reinforced by aromatic residues. This study presents a novel, convenient, sensitive, and probe-free approach using excitation-emission matrix (EEM) fluorescence to monitor the microenvironment of aromatic residues and π-π stacking interactions during different stages of the LLPS pathway.

View Article and Find Full Text PDF

A single-cell, long-read, isoform-resolved case-control study of FTD reveals cell-type-specific and broad splicing dysregulation in human brain.

Cell Rep

September 2025

Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA. Electronic address:

Progranulin-deficient frontotemporal dementia (GRN-FTD) is a major cause of familial FTD with TAR DNA-binding protein 43 (TDP-43) pathology, which is linked to exon dysregulation. However, little is known about this dysregulation in glial and neuronal cells. Here, using splice-junction-covering enrichment probes, we introduce single-nuclei long-read RNA sequencing 2 (SnISOr-Seq2), targeting 3,630 high-interest genes without loss of precision, and complete the first single-cell, long-read-resolved case-control study for neurodegeneration.

View Article and Find Full Text PDF

HDAC6 and TDP-43 promote autophagy impairment in amyotrophic lateral sclerosis.

Neurobiol Dis

September 2025

Cellular Models and Neuroepigenetics Section, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy.

TDP-43 is known to bind the mRNA of histone deacetylase 6 (HDAC6), influencing its RNA translation. Many studies suggest that HDAC6 participates in the regulation of autophagy, which we found impaired in sporadic ALS (sALS) patients. Aim of this work is to evaluate the interaction between TDP-43 and HDAC6 mRNA and to evaluate the effect of the up- and down-regulation of HDAC6 on autophagy in SH-SY5Y cells.

View Article and Find Full Text PDF