Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metal-organic frameworks (MOFs) are a versatile class of porous coordination materials that have found widespread application in various fields, particularly as heterogeneous catalysts. Due to the modular nature and molecular tunability of the metal node-linker coordination in MOFs, they are considered competent hosts for secondary materials in their extensive pore channels. Modifications of the metal nodes or ligand functionalisation in MOFs can improve the anchoring ability of nanoparticles, effectively enhance the nanoparticles' stability, and mitigate the inherent nature of nanoparticles to aggregate. In this review, the synthetic strategies ("ship-in bottle", "bottle-around-ship", and one-pot) and novel characterisation techniques of nanoparticle-MOF (NP-MOF) composites are discussed in detail. The precise determination of nanoparticle-MOF coordination is crucial to shed light on the structure-activity relationships of the catalytic composites. Recognising the synergistic properties of MOFs and metallic nanoparticles, we also explore recent advancements in NP-MOF composites with a special focus on zirconium-based MOFs for catalytic applications within the last five years. Therefore, we aim to aid the reader in evaluating the up-to-date and state-of-the-art advancements concerning the chemistry of nanoparticles and MOFs as catalysts, acting as a path for future learning and optimisations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314872PMC
http://dx.doi.org/10.1039/d5qi01201eDOI Listing

Publication Analysis

Top Keywords

metal-organic frameworks
8
frameworks mofs
8
catalytic applications
8
np-mof composites
8
mofs
7
nanoparticles
5
rational design
4
design metal-organic
4
mofs hosts
4
hosts nanoparticles
4

Similar Publications

Salmonella Typhimurium (S. Typhimurium) is one of the most common food-borne diseases, highlighted as the top food-borne bacterial pathogen in the world with a low infectious dose (1 CFU) and high mortality rate. It is commonly associated with numerous foods such as dairy products, protein sources (multiple types of meat, poultry, and eggs), and bakery products.

View Article and Find Full Text PDF

A key challenge in capturing CO from postcombustion gases is humidity due to competitive adsorption between CO and HO. Multivariate (MTV) metal-organic frameworks (MOFs) have been considered a promising option to address this problem, e.g.

View Article and Find Full Text PDF

Galvanizing waste-derived Zn-induced defective Fe-based metal-organic frameworks as superior adsorbent for enhanced antibiotic removal.

Environ Res

September 2025

College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial University Key Laboratory of Poll

The derivation of defect-engineered metal-organic frameworks (MOFs) from industrial waste simultaneously mitigates environmental pollution, reduces MOF synthesis costs, and enhances adsorption performance. Herein, this study demonstrates a sustainable strategy for the resourceful synthesis of iron-based MOF s-MIL-100(Fe) using galvanizing pickling waste liquor (80.5 wt.

View Article and Find Full Text PDF

To address the increasingly limited water availability, using metal-organic frameworks (MOFs) to capture atmospheric water vapor as usable resources has emerged as a promising strategy. The adsorption characteristics of MOFs as well as their step pressure (i.e.

View Article and Find Full Text PDF

In recent years, photosensitizer-based phototherapy has gained increasing attention in antibacterial applications due to its low cost, noninvasive nature, and low drug resistance. Among various materials, porphyrin-based metal-organic frameworks (MOFs) have demonstrated great potential, due to their good biocompatibility, facile designability, and excellent light absorption capabilities that enable highly efficient antibacterial efficacy. However, further optimization of their antibacterial performance remains a key challenge.

View Article and Find Full Text PDF