Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Optical imaging of genetically encoded calcium indicators is a powerful tool to record the activity of a large number of neurons simultaneously over a long period of time from freely behaving animals. However, determining the exact time at which a neuron spikes and estimating the underlying firing rate from calcium fluorescence data remains challenging, especially for calcium imaging data obtained from a longitudinal study. We propose a multi-trial time-varying penalized method to jointly detect spikes and estimate firing rates by robustly integrating evolving neural dynamics across trials. Our simulation study shows that the proposed method performs well in both spike detection and firing rate estimation. We demonstrate the usefulness of our method on calcium fluorescence trace data from two studies, with the first study showing differential firing rate functions between two behaviors and the second study showing evolving firing rate functions across trials due to learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316062PMC
http://dx.doi.org/10.1080/26941899.2024.2407770DOI Listing

Publication Analysis

Top Keywords

firing rate
16
calcium fluorescence
8
study showing
8
rate functions
8
calcium
5
firing
5
time-varying optimization
4
optimization spike
4
spike inference
4
inference multi-trial
4

Similar Publications

Objectives: To provide insights into the financial burden and opportunity cost of vision loss from retinitis pigmentosa (RP) in the US by using net present value (NPV) of direct medical and nonmedical costs.

Methods: Assumptions, including economic (discount rate, median income, cost-of-living, Social Security and Medicare taxes, public insurance/supplemental benefits, nutrition assistance, and prescription drug assistance), medical (federal National Health Expenditure tables, a recent retrospective claims analysis, and Optum Health claims database) and demographic (mortality rate, increase in mortality due to visual impairment, progression of blindness, probability of survival, retirement rate, rate of disability, and RP diagnosis probability) were made to develop a NPV model. Scenario analyses were performed on benefits and costs arising from patients with RP, if vision could be preserved via novel gene therapies.

View Article and Find Full Text PDF

Introduction: The α-adrenoceptor (αAR) is involved in the physiopathology of the central nervous system (CNS), but its function in the adult male rat locus coeruleus (LC) has not been fully studied. We aimed to characterize the role of the αAR in the regulation of the firing rate (FR) of LC neurons and to describe the signaling pathways involved.

Methods: We measured, through single-unit extracellular recordings of LC neurons from adult male rats were used to measure the effect of adrenergic agonists in the presence and absence of adrenergic antagonists or inhibitors of several signalling pathways.

View Article and Find Full Text PDF

The 'double burden' (or 'second shift') describes the workload of people in paid employment who are also responsible for unpaid domestic work. Globally, most of this work is shouldered by women and is often undervalued. For women working in Emergency Medicine, the double burden is likely to have impacts on career progression and leadership opportunities, as well as present challenges around competing demands of a rotating roster and domestic labour.

View Article and Find Full Text PDF

Inactivation of primate cortex reveals inductive biases in visual learning.

Curr Biol

August 2025

Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.

Humans and other primates are capable of learning to recognize new visual stimuli throughout their lifetimes. Most theoretical models assume that such learning occurs through the adjustment of the large number of synaptic weights connecting the visual cortex to downstream decision-making areas. While this approach to learning can optimize performance on behavioral tasks, it can also be costly in terms of time and energy.

View Article and Find Full Text PDF

ChroMOS: a "microwire-like" CMOS neural probe for chronic neural recordings in mice.

Biosens Bioelectron

September 2025

Microtechnology for Neuroelectronics Unit (NetS(3) lab), Fondazione Istituto Italiano di Tecnologia, Genova, Italy.

Achieving stable and continuous monitoring of signals of numerous single neurons in the brain faces the conflicting challenge of increasing the microelectrode count while minimizing cross-sectional shank dimensions to reduce tissue damage, foreign-body-reaction and maintain signal quality. Passive probes need to route each microelectrode individually to external electronics, thus increasing shank size and tissue-damage as the number of electrodes grows. Active complementary metal-oxide-semiconductor (CMOS) probes overcome the limitation in electrode count and density with on-probe frontend, addressing and multiplexing circuits, but current probes have relatively large shank widths of 70 - 100 μm.

View Article and Find Full Text PDF