98%
921
2 minutes
20
Background: Community-based health insurance (CBHI) is a vital tool for achieving universal health coverage (UHC), a key global health priority outlined in the sustainable development goals (SDGs). Sub-Saharan Africa continues to face challenges in achieving UHC and protecting individuals from the financial burden of disease. As a result, CBHI has become popular in low- and middle-income countries, including Ethiopia. Therefore, this study aimed to identify the ML algorithm with the best predictive accuracy for CBHI enrollment and to determine the most influential predictors among the dataset.
Methods: The 2019 Ethiopian Mini Demographic and Health Survey (EMDHS) data were used. The CBHI were predicted using seven machine learning models: linear discriminant analysis (LDA), support vector machine with radial basis function (SVM), k-nearest neighbors (KNN), classification and regression tree (CART), and random forest (RF). Receiver operating characteristic curves and other metrics were used to evaluate each model's accuracy.
Results: The RF algorithm was determined to be the best machine learning model based on different performance assessments. The result indicates that age, wealth index, household members, and land usage all significantly affect CBHI in Ethiopia.
Conclusion: This study found that RF machine learning models could improve the ability to classify CBHI in Ethiopia with high accuracy. Age, wealth index, household members, and land utilization are some of the most significant variables associated with CBHI that were determined by feature importance. The results of the study can help health professionals and policymakers create focused strategies to improve CBHI enrollment in Ethiopia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12315557 | PMC |
http://dx.doi.org/10.3389/fpubh.2025.1549210 | DOI Listing |
Knee Surg Relat Res
September 2025
Florida Orthopaedic Institute, Gainesville, FL, 32607, USA.
Background: A clear understanding of minimal clinically important difference (MCID) and substantial clinical benefit (SCB) is essential for effectively implementing patient-reported outcome measurements (PROMs) as a performance measure for total knee arthroplasty (TKA). Since not achieving MCID and SCB may reflect suboptimal surgical benefit, the primary aim of this study was to use machine learning to predict patients who may not achieve the threshold-based outcomes (i.e.
View Article and Find Full Text PDFJ Orthop Res
September 2025
Department of Kinesiology, College of Health Sciences, University of Rhode Island, Kingston, Rhode Island, USA.
Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.
View Article and Find Full Text PDFBehav Res Methods
September 2025
Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Prague, Czech Republic.
Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.
View Article and Find Full Text PDFGeroscience
September 2025
Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers.
View Article and Find Full Text PDFBariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.
View Article and Find Full Text PDF