98%
921
2 minutes
20
Introduction: The combination of Astragalus membranaceus and Safflower (AS) is known for its efficacy in benefiting Qi and activating blood circulation, making it a frequently used empirical combination in traditional Chinese medicine. Numerous reports have highlighted the interventional effect of this combination in treating ischemic stroke (IS). However, the active ingredients and potential mechanisms underlying its treatment of stroke have not been fully elucidated.
Methods: Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF/ MS), along with various data processing methods, were utilized to identify and assess the chemical constituents in rat serum following AS gavage administration. Chemical constituent targets were predicted using the SEA and Swiss Target Prediction databases, while IS-related targets were sourced from the GeneCards, OMIM, and TTD databases. The intersecting targets of constituents and diseases were screened, and a core target network map was constructed using the String database and Cytoscape software. KEGG pathway enrichment of core targets was analyzed using DAVID and Metascape databases. The middle cerebral artery occlusion (MCAO) rat model was established to evaluate the cerebroprotective effects of AS. The accuracy of predicted pathways was validated using immunofluorescence (IF) and Western blot (WB) analyses.
Results: Thirty-five ingredients in serum were identified, and 437 targets and 3748 IS-related targets were identified, 291 of which overlapped. Protein-protein interaction (PPI) analysis predicted 15 major targets, including TNF and MAPK3. KEGG pathway analysis indicated that the MAPK/NF-κB and VEGF/Notch1 signaling pathways may play pivotal roles in the therapeutic effects of AS in IS. Moreover, AS significantly ameliorated neurological and motor function impairments, as well as brain histopathological damage, in MCAO rats. AS treatment led to reduced levels of the inflammatory cytokines IL-6 and TNF-α, inhibited astrocyte hyperactivation, decreased nuclear translocation of NF-κB p65, reduced expression of p-MAPK (Erk1/2)/ MAPK (Erk1/2) and p-NF-κB (p65)/NF-κB (p65) proteins, increased the number of CD31+/Ki67+ and VEGF+/ Ki67+-positive vessels, and upregulated the expression of VEGF, VEGFR-2, Notch1, and DLL4 proteins.
Conclusion: AS may regulate MAPK/NF-κB and VEGF/Notch1 pathways to reduce inflammation and promote post-ischemic neovascularization, providing a promising method for the treatment of ischemic stroke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0113816128381137250716212446 | DOI Listing |
Chem Biodivers
September 2025
School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.
20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Cardiology, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, Fujian, China.
Introduction: Kidney stone disease is associated with numerous cardiovascular risk factors. However, the findings across studies are non-uniformly consistent, and the control of confounding variables remains suboptimal. This study aimed to investigate the association between kidney stone and cardiovascular disease.
View Article and Find Full Text PDFArterial thrombosis is a multifaceted process characterized by platelet aggregation and fibrin deposition, leading to the occlusion of blood vessels. It plays a central role in cardiovascular conditions such as myocardial infarction and ischemic stroke. Gaining insight into the mechanisms underlying arterial thrombosis is essential for developing effective treatments aimed at preventing thrombotic events and reducing associated health burdens.
View Article and Find Full Text PDFNeurol Res
September 2025
Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO, USA.
Background: The benefits of rehabilitation in acute ischemic stroke patients following thrombectomy remain underexplored. We assessed which activities of daily living (ADLs) show the greatest improvement after goal-directed therapy in an inpatient rehabilitation setting.
Methods: We retrospectively analyzed pre- and post-rehabilitation functional assessments in 40 acute ischemic stroke patients treated with mechanical thrombectomy.
CNS Drugs
September 2025
Global Health Neurology Lab, Sydney, NSW, 2150, Australia.
Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.
View Article and Find Full Text PDF