A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Sentiment analysis for deepfake X posts using novel transfer learning based word embedding and hybrid LGR approach. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the growth of social media, people are sharing more content than ever, including X posts that reflect a variety of emotions and opinions. AI-generated synthetic text, known as deepfake text, is used to imitate human writing to disseminate misleading information and fake news. However, as deepfake technology continues to grow, it becomes harder to accurately understand people's opinions on deepfake posts. Existing sentiment analysis algorithms frequently fail to capture the domain-specific, misleading, and context-sensitive characteristics of deepfake-related content. This study proposes a hybrid deep learning (DL) approach and novel transfer learning (TL)-based feature extraction approach for deepfake posts' sentiment analysis. The transfer learning-based approach combines the strengths of the hybrid DL technique to capture global and local contextual information. In this study, we compare the proposed approach with a range of machine learning algorithms, as well as, DL techniques for validation. Different feature extraction techniques, such as a bag of words (BOW), term frequency-inverse document frequency (TF-IDF), word embedding features, and novel TL features that combine the LSTM and DT, are used to build the models. The ML models are fine-tuned with extensive hyperparameter tuning to enhance performance and efficiency. The sentiment analysis performance of each applied method is validated using the k-fold cross-validation. The experimental results indicate that the proposed LGR (LSTM+GRU+RNN) approach with novel TL features performs well with a 99% accuracy. The proposed approach helps detect and prevent the spread of deepfake content, keeping people and organizations safe from its negative effects. This study covers a crucial gap in evaluating deepfake-specific social media sentiment by providing a comprehensive, scalable mechanism for monitoring and reducing the effect of fake content online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12319070PMC
http://dx.doi.org/10.1038/s41598-025-10661-3DOI Listing

Publication Analysis

Top Keywords

sentiment analysis
16
deepfake posts
8
novel transfer
8
transfer learning
8
word embedding
8
social media
8
approach novel
8
feature extraction
8
proposed approach
8
novel features
8

Similar Publications