98%
921
2 minutes
20
Transcription factors (TFs) and transcriptional coregulators are emerging therapeutic targets. Gene regulatory networks (GRNs) can evaluate pharmacological agents and identify drivers of disease, but methods that rely solely on gene expression often neglect post-transcriptional modulation of TFs. We present Epiregulon, a method that constructs GRNs from single-cell ATAC-seq and RNA-seq data for accurate prediction of TF activity. This is achieved by considering the co-occurrence of TF expression and chromatin accessibility at TF binding sites in each cell. ChIP-seq data allows motif-agonistic activity inference of transcriptional coregulators or TF harboring neomorphic mutations. Epiregulon accurately predicted the effects of AR inhibition across different drug modalities including an AR antagonist and an AR degrader, delineated the mechanisms of a SMARCA4 degrader by identifying context-dependent interaction partners, and prioritized drivers of lineage reprogramming and tumorigenesis. By mapping gene regulation across various cellular contexts, Epiregulon can accelerate the discovery of therapeutics targeting transcriptional regulators.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12318008 | PMC |
http://dx.doi.org/10.1038/s41467-025-62252-5 | DOI Listing |
Front Hum Neurosci
August 2025
Faculty of Human Sciences, Waseda University, Tokorozawa, Japan.
Suppressing irrelevant information during problem-solving is vital. Misleading or unrelated information may hinder the performance. However, previous studies inferred suppression-related brain regions based on overall problem-solving or pre-solution neural activity, resulting in insufficient experimental control over the precise timing of suppression and the types of information requiring suppression.
View Article and Find Full Text PDFNAR Genom Bioinform
September 2025
Department of Internal Medicine, Nephrology Division, University of Michigan, Ann Arbor 48109 MI, United States.
The dynamics of transcriptional elongation influence many biological activities, such as RNA splicing, polyadenylation, and nuclear export. To quantify the elongation rate, a typical method is to treat cells with drugs that inhibit RNA polymerase II (Pol II) from entering the gene body and then track Pol II using Pro-seq or Gro-seq. However, the downstream data analysis is challenged by the problem of identifying the transition point between the gene regions inhibited by the drug and not, which is necessary to calculate the transcription rate.
View Article and Find Full Text PDFBMB Rep
September 2025
Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
DNA, a large molecule located in the nucleus, carries essential genetic information, including gene loci and cis-regulatory elements. Despite its extensive length, DNA is compactly stored within the limited space of the nucleus due to its hierarchical three-dimensional (3D) organization. In this structure, DNA is organized into territories known as topologically associated domains (TADs).
View Article and Find Full Text PDFRedox Biol
August 2025
Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198, Lleida, Spain. Electronic address:
Mitochondria are dynamic systems adapted to the different cellular demands. In this context, it is hypothesized that lipids, and particularly fatty acids, are also affected by these adaptations and supported at transcriptional level. By analyzing seven mammalian organs from rats, covering the three germ layers and belonging to the four basic types of tissue, we evaluated the differences in the lipidome's fatty acid profiles, calculated fatty acid-derived parameters including susceptibility to lipid peroxidation, and estimated enzymatic activity.
View Article and Find Full Text PDFJ Chromatogr A
September 2025
State Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China. Electronic address:
Rapid and convenient enrichment and detection of volatile cinnamaldehyde (Cin) from a common herbal medicine, cinnamon, was achieved through a reliable MSPE-HPLC-DAD approach. The magnetic porous carbon material (Carbon-FeC/lignin) used for MSPE was prepared as follows. First, the metal organic framework (MIL-101-NH (Fe)) was synthesized using the solvothermal method.
View Article and Find Full Text PDF