Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The anomalous Nernst effect generates a voltage transverse to an applied thermal gradient in some magnetically ordered systems. While the effect was considered excluded in compensated magnetic materials with collinear ordering, in the recently identified symmetry-class of altermagnets, the anomalous Nernst effect is possible despite the compensated collinear spin arrangement. In this work, we show that epitaxial MnSi thin films grown on Si manifest an anomalous Nernst effect with a finite spontaneous signal at zero magnetic field despite the vanishing spontaneous magnetization. We attribute this to the previously theoretically predicted and experimentally corroborated altermagnetism of epitaxial MnSi thin films grown on Si. The observed spontaneous anomalous Nernst coefficient reaches the value of 0.26 μV/K with the corresponding spontaneous Nernst conductivity of 0.22 A/(K  ⋅  m). To complement our measurements, we perform density-functional theory calculations of the momentum-resolved anomalous Nernst conductivity, highlighting the contributions of altermagnetic pseudonodal surfaces and ladder transitions to the Berry curvature. Our results illustrate the value of unconventional d-wave wave altermagnets composed of abundant and non-toxic light elements for thermo-electrics and spin-caloritronics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12318009PMC
http://dx.doi.org/10.1038/s41467-025-62331-7DOI Listing

Publication Analysis

Top Keywords

anomalous nernst
24
epitaxial mnsi
8
mnsi thin
8
thin films
8
films grown
8
nernst conductivity
8
nernst
7
anomalous
5
observation anomalous
4
nernst altermagnetic
4

Similar Publications

Heat flux sensors based on the anomalous Nernst effect (ANE) have emerged as a promising solution for achieving thin and flexible designs. ANE-based heat flux sensors typically employ thermopile structures composed of two ANE materials with opposite signs, connected in series to enhance sensing performance. However, a mismatch in the Seebeck coefficient between the two ANE materials causes a considerable offset voltage due to the Seebeck effect (SE) under oblique heat flux.

View Article and Find Full Text PDF

Kagomé lattice magnets have recently garnered significant interest due to the pronounced transverse transport characteristics, particularly in thermoelectric and spintronic applications, stemming from the interplay between topology and magnetism. Here, a comprehensive investigation of the magnetic, electrical, and thermoelectric transport properties, as well as the complex spin configurations, is conducted in a polycrystalline Kagomé ferromagnet GdCo. Strikingly, a giant anomalous Hall conductivity ≈2125 S cm is obtained at T = 10 K, which is primarily governed by the extrinsic skew-scattering mechanism.

View Article and Find Full Text PDF

The discovery of magnetic Weyl semimetals (WSMs) has drawn significant interest due to their exceptional topological properties and anomalous transport behaviors, presenting exciting possibilities for advanced technological applications. Co-based Heusler compounds, with their unique band structures, have emerged as key materials for exploring the interplay between magnetism and topology. In this work, we perform a detailed first-principles study on Co2-xCrMnGe Heusler alloys (0⩽⩽1), proposing new candidates with significantly enhanced nontrivial transport properties.

View Article and Find Full Text PDF

Magnetic thin films and nanostructures present a unique challenge for a range of thermal measurements, with important consequences for both fundamental physics and material science and applications. This paper reviews the unique capabilities for measurement and control of these systems using thermal gradients applied using micro- and nanofabricated silicon-nitride membrane platforms. Supporting a thin film or nanostructure removes bulk heat sinks from the tiny structure, enabling otherwise challenging or impossible measurements including thermal conductivity, Seebeck coefficient, Peltier coefficient, magnon drag, both the anomalous and planar Nernst effect, specific heat, and novel manifestations of thermally assisted spin transport.

View Article and Find Full Text PDF

The anomalous Nernst effect generates a voltage transverse to an applied thermal gradient in some magnetically ordered systems. While the effect was considered excluded in compensated magnetic materials with collinear ordering, in the recently identified symmetry-class of altermagnets, the anomalous Nernst effect is possible despite the compensated collinear spin arrangement. In this work, we show that epitaxial MnSi thin films grown on Si manifest an anomalous Nernst effect with a finite spontaneous signal at zero magnetic field despite the vanishing spontaneous magnetization.

View Article and Find Full Text PDF