A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Dendritic Membranized Coacervate Microdroplets: A Robust Platform for Synthetic-Living Cell Consortia. | LitMetric

Dendritic Membranized Coacervate Microdroplets: A Robust Platform for Synthetic-Living Cell Consortia.

J Am Chem Soc

Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bottom-up synthetic biology seeks to construct artificial cells with biomimetic or novel functionalities to uncover the fundamental principles of cellular evolution and drive advances in medicine and bioengineering. Among them, membranized coacervate microdroplets (MCM) uniquely combine a molecularly crowded aqueous interior with a surrounding membrane, both hallmarks of eukaryotic cells. Replicating cellular functions requires synthetic cells to remain structurally stable in biological environments, where ionic strength presents a significant threat to the integrity of complex coacervates. By leveraging the globular and rigid architecture of dendrimers, MCM, composed of oppositely charged small dendrimers and polypeptides─further stabilized by a charged PEG-dendritic copolymer assembled at the periphery─exhibits a critical salt concentration more than twice that of coacervates formed from polypeptides or branched polyelectrolytes with significantly higher degrees of polymerization. This highlights the enhanced robustness of dendritic MCM under physiological conditions and their suitability as synthetic cells in biological media. By mimicking key cell-like behavior such as efficient enzyme encapsulation (irrespective of the isoelectric point), fast internal dynamics, and chemical communication, dendritic MCM emerge as a promising synthetic cell platform for the selective delivery of therapeutic enzymes. In addition, their ability to engage in signal transduction pathways within synthetic-natural cell consortia, enabling responses to extracellular cues via chemical signaling, paves their way in tissue engineering and regenerative medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12356591PMC
http://dx.doi.org/10.1021/jacs.5c09772DOI Listing

Publication Analysis

Top Keywords

membranized coacervate
8
coacervate microdroplets
8
cell consortia
8
synthetic cells
8
dendritic mcm
8
dendritic membranized
4
microdroplets robust
4
robust platform
4
platform synthetic-living
4
synthetic-living cell
4

Similar Publications