98%
921
2 minutes
20
Bacterial exopolysaccharide, dextran, primarily composed of α-(1→6)-linked d-glucosyl residues, is synthesized from α-(1→4)-glucan dextrin or sucrose through successive anomer-retaining transglucosylation reactions by dextran dextrinase (DDase) or dextransucrase, respectively. Although the structure-function relationship of dextransucrase has been extensively studied, that of DDase remains largely unknown. Herein, we revealed the Gluconobacter oxydans DDase structural basis through biochemical and structural analyses. The DDase comprises 1284 residues, with its N-terminal 902 residues being functionally essential. Crystal structure analysis of the minimal active DDase (Δ382C) complex with the pseudo-maltotetraose inhibitor, acarbose, revealed its homodimeric structure. A Δ382C protomer contains two β-sandwich domains, N1 and N2, and an (α/α)-barrel domain A. Surprisingly, domains N2, A, and the helix-loop-helix connecting them structurally resemble those of bacterial anomer-inverting glucohydrolases in glycoside hydrolase family 15 (GH15). Domain N1 primarily forms intra- and inter-subunit domain interfaces. The DDase acarbose-binding residues in subsite -1 are conserved with GH15 glucohydrolases. The DDase Glu671 and Glu858 are positioned similarly to the GH15 glucohydrolase general acid and base catalysts, respectively. However, Glu858 is approximately 1.2 to 1.6 Å closer to the acarbose equivalent anomeric carbon, facilitating its role as a nucleophilic catalyst in the double displacement mechanism. The catalytic residue functions were biochemically confirmed using mutant enzymes. Spatial position of Glu858 is arranged by the local structure of the α11→α12 loop and subunit interactions involving domain N1. Enzymes classified in the same GH family catalyze reactions with different mechanisms, anomer-inverting or -retaining, due to differences in their catalytic residue spatial arrangement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbc.2025.110541 | DOI Listing |
Med Humanit
September 2025
Faculty of Health, York University, Keele Campus, Toronto, Ontario, Canada
The arts and humanities can direct attention to the health-threatening effects of adverse living and working conditions and the political and economic systems that spawn them. Most of these efforts aim to improve healthcare by promoting empathy and sensitivity among health professionals towards patients and improving clinical skills. However, less effort is devoted towards improving living and working conditions-the structural and social determinants of health-that cause illness and make managing illness difficult.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Biological Sciences, Columbia University, New York, NY 10027, United States.
The 3'-end cleavage and polyadenylation of pre-mRNAs is dependent on a key hexanucleotide motif known as the polyadenylation signal (PAS). The PAS hexamer is recognized by the mammalian polyadenylation specificity factor (mPSF). AAUAAA is the most frequent PAS hexamer and together with AUUAAA, the second most frequent hexamer, account for ∼75% of the poly(A) signals.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2025
Department of Chemical Engineering, Analysis and Test Center, Shenyang University of Chemical Technology, Shenyang 110142, China. Electronic address:
Asiatic acid (AA) was used as the lead compound and 22 inhibitors of specificity protein 1 (Sp1) were designed and synthesized with modification at A ring and C-28 position of AA, whose structures were confirmed by HRMS, H NMR and C NMR. The growth inhibitory effects of Asiatic acid derivatives on human breast cancer cells (MCF-7) and cervical cancer cells (Hela) were determined by tetramethyl azole salt (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT) colorimetric assay. The results showed that all of these compounds inhibited the proliferation of HeLa and MCF-7 cells, and all the derivatives showed stronger tumor cytotoxicity than AA, among which compounds I, II, and III were comparable to the positive control drug cisplatin.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2025
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, PR China. Electronic address:
The electronic structure, spectroscopic constants, and transition parameters of the diatomic molecule Magnesium monosulfide (MgS) were investigated using high-level multi-reference configuration interaction calculations with the Davidson correction (MRCI+Q) and a consistent basis set for both Mg and S atoms. Potential energy curves and dipole moment functions were computed, allowing for accurate predictions of rovibrational energy levels. Key transition properties, including radiative lifetimes and Franck-Condon factors, were evaluated for transitions within the ground electronic state and the first excited singlet state.
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
Department of Nursing, Guangxi Medical University Nursing College, Nanning, Guangxi 530021, China. Electronic address:
The voltage-dependent anion channel (VDAC) family proteins can be subdivided into three isoforms: VDAC1, VDAC2, and VDAC3. As core channels of the mitochondrial outer membrane, these proteins exhibit paradoxical regulatory roles in cancer development. This review systematically summarizes their structural and functional characteristics, as well as the contradictory mechanisms in tumorigenesis and progression.
View Article and Find Full Text PDF