Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hohenberg and Kohn have proven that the electronic energy and the one-particle electron density can, in principle, be obtained by minimizing an energy functional with respect to the density. While decades of theoretical work have produced increasingly faithful approximations to this elusive exact energy functional, their accuracy is still insufficient for many applications, making it reasonable to try and learn it empirically. Using rotationally equivariant atomistic machine learning, we obtain for the first time a density functional that, when applied to the organic molecules in QM9, yields energies with chemical accuracy relative to the Kohn-Sham reference while also converging to meaningful electron densities. Augmenting the training data with densities obtained from perturbed potentials proved key to these advances. This work demonstrates that machine learning can play a crucial role in narrowing the gap between theory and the practical realization of Hohenberg and Kohn's vision, paving the way for more efficient calculations in large molecular systems. The trained STRUCTURES25 model is made available along with full source code and data for training and inference.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c06219DOI Listing

Publication Analysis

Top Keywords

machine learning
12
density functional
8
energy functional
8
stable accurate
4
accurate orbital-free
4
density
4
orbital-free density
4
functional
4
functional theory
4
theory powered
4

Similar Publications

Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.

Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.

View Article and Find Full Text PDF

Turbulent convection governs heat transport in both natural and industrial settings, yet optimizing it under extreme conditions remains a significant challenge. Traditional control strategies, such as predefined temperature modulation, struggle to achieve substantial enhancement. Here, we introduce a deep reinforcement learning (DRL) framework that autonomously discovers optimal control policies to maximize heat transfer in turbulent Rayleigh-Bénard convection.

View Article and Find Full Text PDF

AI-enhanced predictive modeling for treatment duration and personalized treatment planning of cleft lip and palate therapy.

Int J Comput Assist Radiol Surg

September 2025

Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.

Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.

View Article and Find Full Text PDF

Myocarditis is an inflammation of heart tissue. Cardiovascular magnetic resonance imaging (CMR) has emerged as an important non-invasive imaging tool for diagnosing myocarditis, however, interpretation remains a challenge for novice physicians. Advancements in machine learning (ML) models have further improved diagnostic accuracy, demonstrating good performance.

View Article and Find Full Text PDF