Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Covalent adaptable networks (CANs) and CO-derived polyhydroxyurethanes (PHUs) are often deemed as sustainable alternatives to conventional thermosets, particularly for composites made with epoxy (EP) matrices. However, the sustainability of CAN-based composites has never been assessed, nor has that of thermoset PHUs. Herein, we perform a life cycle assessment of PHUs, synergetic hybrid EP-PHU CANs, and EP in composite applications with either carbon or natural fibers (NFs) in order to address their syntheses, processes, and recycling. We demonstrate that producing cyclic carbonate monomers from epoxy and supercritical CO could be advantageous. PHUs provide potential environmental benefits to epoxy, but they are significantly limited by the energy inputs required for curing. Inversely, synergetic EP-PHU demonstrates noticeable environmental gain compared to EP and PHU-based composites and offers ideal recycling pathways. The chemical recovery of carbon fibers by oxidative depolymerization shows substantial benefits compared with virgin material production. When using NFs, mechanical recycling of CAN-based matrices is more suited due to the impacts of chemical recycling compared to virgin NF production, highlighting that the viability of a strategy strongly depends on raw materials and cannot be generalized easily. Strategies to further enhance the sustainability of composites are also proposed and discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12308879 | PMC |
http://dx.doi.org/10.1021/acssuschemeng.5c01260 | DOI Listing |