A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

NfκBin: a machine learning based method for screening TNF-α induced NF-κB inhibitors. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Nuclear Factor kappa B (NF-κB) is a transcription factor whose upregulation is associated in chronic inflammatory diseases, including rheumatoid arthritis, inflammatory bowel disease, and asthma. In order to develop therapeutic strategies targeting NF-κB-related diseases, we developed a computational approach to predict drugs capable of inhibiting TNF-α induced NF-κB signaling pathways.

Method: We utilized a dataset comprising 1,149 inhibitors and 1,332 non-inhibitors retrieved from PubChem. Chemical descriptors were computed using the PaDEL software, and relevant features were selected using advanced feature selection techniques.

Result: Initially, machine learning models were constructed using 2D descriptors, 3D descriptors, and molecular fingerprints, achieving maximum AUC values of 0.66, 0.56, and 0.66, respectively. To improve feature selection, we applied univariate analysis and SVC-L1 regularization to identify features that can effectively differentiate inhibitors from non-inhibitors. Using these selected features, we developed machine learning models, our support vector classifier achieved a highest AUC of 0.75 on the validation dataset.

Discussion: Finally, this best-performing model was employed to screen FDA-approved drugs for potential NF-κB inhibitors. Notably, most of the predicted inhibitors corresponded to drugs previously identified as inhibitors in experimental studies, underscoring the model's predictive reliability. Our best-performing models have been integrated into a standalone software and web server, NfκBin. (https://webs.iiitd.edu.in/raghava/nfkbin/).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12310657PMC
http://dx.doi.org/10.3389/fbinf.2025.1573744DOI Listing

Publication Analysis

Top Keywords

machine learning
12
tnf-α induced
8
induced nf-κb
8
nf-κb inhibitors
8
feature selection
8
learning models
8
inhibitors
6
nfκbin machine
4
learning based
4
based method
4

Similar Publications