Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We consider a free fermion chain with uniform nearest-neighbor hopping and let it evolve from an arbitrary initial state with a fixed macroscopic number of particles. We then prove that, at a sufficiently large and typical time, the measured coarse-grained density distribution is almost uniform with (quantum mechanical) probability extremely close to one. This establishes the emergence of irreversible behavior, i.e., a ballistic diffusion, in a system governed by quantum mechanical unitary time evolution. It is conceptually important that irreversibility from any initial state is proved here without introducing any randomness to the initial state or the Hamiltonian, while the known examples, both classical and quantum, rely on certain randomness or apply to limited classes of initial states. The essential new ingredient in the proof is the large deviation bound for every energy eigenstate, which is reminiscent of the strong ETH (energy eigenstate thermalization hypothesis).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/8cdf-sth8 | DOI Listing |