98%
921
2 minutes
20
Radiomic biomarkers offer promise for precision oncology. However, their clinical utility is limited by variability from differing imaging protocols and the high dimensionality of radiomics data. Feature selection is key for better interpretability, accuracy, and efficiency, yet traditional methods lack stability and reproducibility. We investigate a Graph-Based Feature Selection (Graph-FS) approach that models feature interdependencies to identify stable radiomic signatures for head and neck squamous cell carcinoma (HNSCC) across institutions. We retrospectively analyzed 1,648 radiomic features extracted from the gross tumor volumes of 752 HNSCC patients from three institutions. After standard preprocessing and applying 36 radiomics parameter configurations to simulate variability, we compared Graph-FS with established methods: Boruta, Lasso, Recursive Feature Elimination (RFE), and Minimum Redundancy Maximum Relevance (mRMR). We evaluated feature selection stability and reproducibility using Pearson correlation, the Jaccard Index (JI), and the Dice-Sorensen Index (DSI) and assessed ranking consistency with Kendall's Coefficient of Concordance (W). Graph-FS achieved higher stability (JI = 0.46, DSI = 0.62, OP = 45.8%) versus baseline methods with JI of 0.005 (Boruta), 0.010 (Lasso), 0.006 (RFE) and 0.014 (mRMR). These results demonstrate that Graph-FS enhances feature stability, reproducibility, and predictive performance. This method could facilitate integration into AI-driven radiomics workflows for reliable, multi-center biomarker discovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313853 | PMC |
http://dx.doi.org/10.1038/s41598-025-12161-w | DOI Listing |
Commun Chem
September 2025
Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
Promiscuity, or selectivity on a spectrum, is an encoded feature in biomolecular anion recognition. To unravel the molecular drivers of promiscuous anion recognition, we have employed a comprehensive approach - spanning experiment and theory - with the Staphylococcus carnosus nitrate regulatory element A (ScNreA) as a model. Thermodynamic analysis reveals that ScNreA complexation with native nitrate and nitrite or non-native iodide is an exothermic process.
View Article and Find Full Text PDFLeukemia
September 2025
University Children's Hospital Zurich, Pediatric Oncology and Children's Research Center, Zurich, Switzerland.
Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
While non-destructive in-line monitoring at manufacturing sites is essential for safe distribution cycles of pharmaceuticals, efforts are still insufficient to develop analytical systems for detailed dynamic visualisation of foreign substances and material composition in target pills. Although spectroscopies, expected towards pharma testing, have faced technical challenges in in-line setups for bulky equipment housing, this work demonstrates compact dynamic photo-monitoring systems by selectively extracting informative irradiation-wavelengths from comprehensive optical references of target pills. This work develops a non-destructive in-line dynamic inspection system for pharma agent pills with carbon nanotube (CNT) photo-thermoelectric imagers and the associated ultrabroadband sub-terahertz (THz)-infrared (IR) multi-wavelength monitoring.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.
Heterostructures have emerged as promising contenders for surface-enhanced Raman scattering (SERS) applications. Nevertheless, the construction of a composite SERS substrate with well-matched energy levels persists as a challenge, primarily due to the restricted selection of SERS-active materials. In this study, we successfully synthesized a Ag nanoparticles (NPs)/ZnO nanorods (NRs)/GaN heterojunction featuring type II staggered energy bands, which provides an outstanding platform for efficient SERS detection.
View Article and Find Full Text PDFJ Endod
September 2025
Dental Specialty Center, Brazilian Military Police, Minas Gerais, Brazil.
Introduction: To evaluate how stepwise enlargement in the mesial root canals of mandibular first molars affect shaping outcomes and irrigant dynamics.
Methods: The shaping ability and irrigant flow patterns in mesial canals of mandibular first molars enlarged with ProTaper Next instruments (25/.06v, 30/.