A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Quantum dot molecular beacons achieve sub-10 pM CRISPR-Cas detection in field-ready assays. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

CRISPR-Cas systems have revolutionized molecular diagnostics through their specificity and programmability, yet their broad adoption is hindered by the reliance on expensive and complex instrumentation. Here, we present an optimized quantum dot (QD) molecular beacon (QD-MB) platform that integrates Förster resonance energy transfer (FRET)-based detection with CRISPR-Cas functionality, achieving sub-picomolar sensitivity without the need for target amplification. By systematically tuning components, including His-tag modifications for improved QD conjugation, nucleic acid hairpin structures for enhanced enzyme interaction, and QD surface passivation strategies, we demonstrate a two-order-of-magnitude improvement in detection sensitivity. Using LwaCas13a and RNA targets, the limit of detection (LOD) decreased to under 1 pM with plate-reader-based fluorescence measurements and below 10 pM with a lamp-and-smartphone setup, establishing the feasibility of portable, field-ready applications. This work highlights the transformative potential of QD-MBs in biosensing and sets a foundation for further advances in CRISPR-based diagnostics and nanotechnology-enabled sensing platforms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313975PMC
http://dx.doi.org/10.1038/s41598-025-09434-9DOI Listing

Publication Analysis

Top Keywords

quantum dot
8
dot molecular
8
molecular beacons
4
beacons achieve
4
achieve sub-10
4
sub-10 crispr-cas
4
detection
4
crispr-cas detection
4
detection field-ready
4
field-ready assays
4

Similar Publications