98%
921
2 minutes
20
Human gait control involves regulating multiple parameters, particularly when navigating uneven terrain. Terrain perturbations can introduce substantial challenges. While the regulation of total step mechanical work across multiple steps has been studied, other observed measures of gait adjustment remain less explored. Using an analytical model, we examined the center of mass (COM) mechanical work and step frequency cost to evaluate the mechanistic implications of transitory step adjustment strategies reported in the literature. Since COM work represents most walking energetics, mechanical analysis shows a specific threshold for which the cost of going atop a perturbation and extending the step length are equal. The same could be observed when the total cost (work and frequency) is examined. Thus, beyond the point of equilibrium, the strategy with less metabolic cost must be favorable. As this evaluation is based on a Just-in-Time walking strategy, extended lookahead horizon on less complicated terrains may change the preference. Our simulations reveal that transient step length reduction with nominal push-off has less collisional dissipation and, as such, elevated walking momentum post step transition. This strategy can compensate for lost momentum atop terrain perturbations yet, it is costlier than push-off regulation. Hence, it might instead be for foothold selection. An extended step may also be utilized when momentum reduction is needed. Additionally, simulations showed that effective leg length adjustment can not only alter the step length but may also limit COM elevation changes. It in turn limits the work against gravity or perhaps limb loading due to elevated collisions. Therefore, step length adjustments, achieved either by adopting different gait strategies or by controlling the effective leg length, are noted as possible complementary approaches to modulating the magnitude of the push-off and preparation to vault atop a perturbation. We also evaluated the anticipatory control traits of older adults, who are more vulnerable to falls on uneven terrain. Older adults demonstrated a transitory speed decrease before encountering perturbation. This might be an indication that older adults require extra time to select a secure foothold. Even without penalty for the lost time of deceleration, to achieve the average speed after a terrain perturbation encounter, we observe materially increased total mechanical work when the walker slows down just before a perturbation. This added cost likely contributes to the higher mechanical work observed in older adults when walking. Elevated mechanical work demand may contribute to fall incidents in older adults when they are not able to perform adequately.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2025.112234 | DOI Listing |
Int J Pharm X
June 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
Ultra-sensitive pH-responsive drug delivery system designed to operate within the slightly acidic microenvironment of tumors are highly desired for hydrogel applications in cancer therapy. In this study, 4-Formylbenzoic acid modified polyvinyl alcohol (PVA-FBA, PF) was synthesized and utilized as a carrier for encapsulating the anticancer drug Doxorubicin (Dox). This was subsequently crosslinked with polyethylenimine (PEI) via benzoic-imine bond to form drug-loaded PVA-FBA/PEI hydrogel (D-PFP).
View Article and Find Full Text PDFBiochem Biophys Rep
December 2025
Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
Brillouin microscopy allows mechanical investigations of biological materials at the subcellular level and can be integrated with Raman spectroscopy for simultaneous chemical mapping, thus enabling a more comprehensive interpretation of biomechanics. The present study investigates different in vitro glioblastoma models using a combination of Brillouin and Raman microspectroscopy. Spheroids of the U87-MG cell line and two patient-derived cell lines as well as patient-derived organoids were used.
View Article and Find Full Text PDFBuild Environ
March 2025
National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Morgantown, West Virginia, USA.
Influenza viruses can be aerosolized when slaughtering infected chickens, which increases the risk of zoonotic transmission. We conducted pilot experiments to measure the concentrations of airborne particles <2.5 μm during slaughtering and defeathering of chickens to help identify methods that can minimize workers' exposure to potentially hazardous aerosol particles.
View Article and Find Full Text PDFMater Today Bio
October 2025
University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska Ulica 8, SI-2000, Maribor, Slovenia.
Catheter associated urinary tract infection (CAUTI) is the most frequent healthcare associated infection, arising from microbial adhesion to catheter surfaces, biofilm development, and the growing problem of antimicrobial resistance. Many publications have addressed CAUTI epidemiology, biofilm biology, or biomaterials for catheters in isolation, yet there is little literature that connects these areas into a coherent translational perspective. This review seeks to fill that gap by combining an overview of biofilm pathophysiology with recent advances in material based innovations for catheter design, including nanostructured and responsive coatings, sensor enabled systems, additive manufacturing, and three dimensional printing.
View Article and Find Full Text PDFMater Today Bio
October 2025
Yunnan Key Laboratory of Breast Cancer Precision Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, 650500, Yunnan, China.
Achieving precise intratumoral accumulation and coordinated activation remains a major challenge in nanomedicine. Photothermal therapy (PTT) provides spatiotemporal control, yet its efficacy is hindered by heterogeneous distribution of PTT agents and limited synergy with other modalities. Here, we develop a dual-activation nanoplatform (IrO-P) that integrates exogenous photothermal stimulation with endogenous tumor microenvironment (TME)-responsive catalysis for synergistic chemodynamic therapy (CDT) and ferroptosis induction.
View Article and Find Full Text PDF