A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The individual isoforms of ORMDL, the regulatory subunit of serine palmitoyltransferase, have distinctive sensitivities to ceramide. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sphingolipids play crucial roles in cell membrane structure and in multiple signaling pathways. Sphingolipid de novo biosynthesis is mediated by the serine palmitoyltransferase (SPT) enzyme complex. Homeostatic regulation of this complex is dependent on its regulatory subunit, the ORMDLs, of which there are three isoforms. It is well established that the ORMDLs regulate SPT activity, but it is still unclear whether the three ORMDL isoforms have distinct functions and properties. Here, we focus on understanding the physiological importance of ORMDL isoforms (ORMDL1, ORMDL2, and ORMDL3) in regulating SPT activity and sphingolipid levels. This study delves into the differential responses of the SPT complexes containing different ORMDL isoforms to cellular ceramide levels. By using the CRISPR/Cas9 gene editing tool, we have developed Hela cell lines each of which harbor only one of the three ORMDL isoforms as well as a cell line deleted for all three isoforms. Consistent with other studies, we find that deletion of all three ORMDL isoforms desensitizes SPT to ceramide and dramatically increases levels of cellular sphingolipids. In contrast, each ORMDL isoform alone is capable of regulating SPT activity and maintaining normal levels of sphingolipid. Strikingly, however, we find that each ORMDL isoform exhibits isoform-specific sensitivity to ceramide. This suggests that the inclusion of specific ORMDL isoforms into the SPT complex may accomplish a fine-tuning of sphingolipid homeostasis. The study not only emphasizes the need for further investigation into the distinct roles of ORMDL isoforms but also sheds light on their potential as therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399287PMC
http://dx.doi.org/10.1016/j.bbalip.2025.159677DOI Listing

Publication Analysis

Top Keywords

ormdl isoforms
28
spt activity
12
three ormdl
12
ormdl
10
isoforms
9
regulatory subunit
8
serine palmitoyltransferase
8
three isoforms
8
isoforms well
8
regulating spt
8

Similar Publications