A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Carboxylic ligands and their influence on the structural properties of PbTe quantum dots. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a low-cost, straightforward, and tunable hot-injection method for synthesizing PbTe quantum dots (QDs). By incorporating short-chain carboxylic acids-hexanoic acid (HexA), heptanoic acid (HepA), and acetic acid (AcA)-alongside oleic acid (OA), we controlled QD morphology and size within the range of 13-17 nm. The resulting QDs exhibited a well-defined cuboctahedral shape and a core-shell structure, consisting of a crystalline core and an amorphous shell. Morphology and growth behavior were strongly influenced by precursor composition, ligand ratio, and steric hindrance. Compared to QDs synthesized with longer-chain acids (lauric (LA), decanoic (DA), and octanoic acids(OctA)), which produced multiple shapes, the use of shorter ligands led exclusively to uniform cuboctahedral nanocrystals. PbTe QDs are typically reported as cubic when their size exceeds 10 nm. In contrast, our method consistently produces cuboctahedral structures in this size range. QDs were characterized by high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). These findings open a route toward controlled shape engineering of PbTe QDs for future applications in quantum optics, infrared detectors, and thermoelectrics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12312907PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0328972PLOS

Publication Analysis

Top Keywords

pbte quantum
8
quantum dots
8
size range
8
pbte qds
8
qds
6
carboxylic ligands
4
ligands influence
4
influence structural
4
structural properties
4
pbte
4

Similar Publications