98%
921
2 minutes
20
We show that the Deep Underground Neutrino Experiment (DUNE) has the potential to make a precise measurement of the total active flux of ^{8}B solar neutrinos via neutral-current (NC) interactions with argon. This would complement proposed precise measurements of solar-neutrino fluxes in DUNE via charged-current (CC) interactions with argon and mixed CC/NC interactions with electrons. Together, these would enable DUNE to make a Sudbury Neutrino Observatory (SNO)-like comparison of rates and thus to make the most precise measurements of sin^{2}θ_{12} and Δm_{21}^{2} using solar neutrinos. Realizing this potential requires dedicated but realistic efforts to improve DUNE's low-energy capabilities and separately to reduce neutrino-argon cross-section uncertainties. Comparison of mixing-parameter results obtained using solar neutrinos in DUNE and reactor antineutrinos in the Jiangmen Underground Neutrino Observatory (JUNO) would allow for unprecedented tests of new physics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/htfm-tbdq | DOI Listing |
Phys Rev Lett
July 2025
The University of Melbourne, School of Physics, Victoria 3010, Australia.
We show that the Deep Underground Neutrino Experiment (DUNE) has the potential to make a precise measurement of the total active flux of ^{8}B solar neutrinos via neutral-current (NC) interactions with argon. This would complement proposed precise measurements of solar-neutrino fluxes in DUNE via charged-current (CC) interactions with argon and mixed CC/NC interactions with electrons. Together, these would enable DUNE to make a Sudbury Neutrino Observatory (SNO)-like comparison of rates and thus to make the most precise measurements of sin^{2}θ_{12} and Δm_{21}^{2} using solar neutrinos.
View Article and Find Full Text PDFPhys Rev Lett
January 2025
Shanghai Jiao Tong University, School of Physics and Astronomy, Key Laboratory for Particle Astrophysics and Cosmology (MoE), Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai 200240, China.
New particles beyond the standard model of particle physics, such as axions, can be effectively searched through their interactions with electrons. We use the large liquid xenon detector PandaX-4T to search for novel electronic recoil signals induced by solar axions, neutrinos with anomalous magnetic moment, axionlike particles, dark photons, and light fermionic dark matter. A detailed background model is established using the latest datasets with 1.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Zellescher Weg 19, 01062 Dresden, Germany.
Stable ^{205}Tl ions have the lowest known energy threshold for capturing electron neutrinos (ν_{e}) of E_{ν_{e}}≥50.6 keV. The Lorandite Experiment (LOREX), proposed in the 1980s, aims at obtaining the longtime averaged solar neutrino flux by utilizing natural deposits of Tl-bearing lorandite ores.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Physics, University of California San Diego, La Jolla, California 92093, USA.
Phys Rev Lett
November 2024
School of Physics and Astronomy, Shanghai Jiao Tong University, Key Laboratory for Particle Astrophysics and Cosmology (MoE), Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai 200240, China.